Skip to main content
Log in

Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathway

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT1R) is critically required to the development of T3-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT1R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT1R blocker (Losartan, 1 μM) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T3 (10 nM) treatment. The cardiomyocytes transfected with the AT1R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT1R. The AT1R silencing and the AT1R blockade totally prevented the T3-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal α-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T3 demonstrated a rapid activation of Akt/GSK-3β/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 μM and Wortmannin, 200 nM). In addition, we demonstrated that the AT1R mediated the T3-induced activation of Akt/GSK-3β/mTOR signaling pathway, since the AT1R silencing and the AT1R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT1R expression (180%, P < 0.05) were rapidly increased by T3 treatment. These data demonstrate for the first time that the AT1R is a critical mediator to the T3-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3β/mTOR signaling pathway. These results represent a new insight into the mechanism of T3-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT1R-Akt/GSK-3β/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T3 in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Araujo AS, Schenkel P, Enzveiler AT, Fernandes TR, Partata WA, Llesuy S, Ribeiro MF, Khaper N, Singal PK, Bello-Klein A (2008) The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J Mol Endocrinol 41:423–430

    Article  CAS  PubMed  Google Scholar 

  2. Bader M (2002) Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models. J Mol Cell Cardiol 34:1455–1462

    Article  CAS  PubMed  Google Scholar 

  3. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610–H618

    CAS  PubMed  Google Scholar 

  4. Barreto-Chaves ML, Heimann A, Krieger JE (2000) Stimulatory effect of dexamethasone on angiotensin-converting enzyme in neonatal rat cardiac myocytes. Braz J Med Biol Res 33:661–664

    Article  CAS  PubMed  Google Scholar 

  5. Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  CAS  PubMed  Google Scholar 

  6. Billet S, Aguilar F, Baudry C, Clauser E (2008) Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int 74:1379–1384

    Article  CAS  PubMed  Google Scholar 

  7. Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RL, Pinheiro SV, Santos RA, Barreto-Chaves ML (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223

    Article  CAS  PubMed  Google Scholar 

  8. Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 27:2942–2949

    Article  CAS  PubMed  Google Scholar 

  9. Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280:4553–4567

    Article  CAS  PubMed  Google Scholar 

  10. Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross J (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 99:12333–12338

    Article  CAS  PubMed  Google Scholar 

  11. D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46:1347–1354

    Article  PubMed  Google Scholar 

  12. Danser AH (1996) Local renin-angiotensin systems. Mol Cell Biochem 157:211–216

    Article  CAS  PubMed  Google Scholar 

  13. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29:211–218

    CAS  PubMed  Google Scholar 

  14. Dillmann WH (2002) Cellular action of thyroid hormone on the heart. Thyroid 12:447–452

    Article  CAS  PubMed  Google Scholar 

  15. Dillmann WH (2009) Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev. doi:10.1007/s10741-008-9125-7

  16. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81

    Article  CAS  PubMed  Google Scholar 

  17. Dorn GWII (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49:962–970

    Article  CAS  PubMed  Google Scholar 

  18. Dorn GWII, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    CAS  PubMed  Google Scholar 

  19. Dzau VJ (1988) Cardiac renin-angiotensin system. Molecular and functional aspects. Am J Med 84:22–27

    Article  CAS  PubMed  Google Scholar 

  20. Eguchi S, Frank GD, Mifune M, Inagami T (2003) Metalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling. Biochem Soc Trans 31:1198–1202

    Article  CAS  PubMed  Google Scholar 

  21. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297

    Article  CAS  PubMed  Google Scholar 

  22. Flusberg DA, Numaguchi Y, Ingber DE (2001) Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 12:3087–3094

    CAS  PubMed  Google Scholar 

  23. Godeny MD, Sayeski PP (2006) ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am J Physiol Cell Physiol 291:C1308–C1317

    Article  CAS  PubMed  Google Scholar 

  24. Golomb E, Abassi ZA, Cuda G, Stylianou M, Panchal VR, Trachewsky D, Keiser HR (1994) Angiotensin II maintains, but does not mediate, isoproterenol-induced cardiac hypertrophy in rats. Am J Physiol 267:H1496–H1506

    CAS  PubMed  Google Scholar 

  25. Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW (1997) Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29:366–373

    CAS  PubMed  Google Scholar 

  26. Gupta S, Das B, Sen S (2007) Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal 9:623–652

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112:417–428

    Article  CAS  PubMed  Google Scholar 

  28. Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621

    CAS  PubMed  Google Scholar 

  29. Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480

    CAS  PubMed  Google Scholar 

  30. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672

    Article  CAS  PubMed  Google Scholar 

  31. Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47

    Article  CAS  PubMed  Google Scholar 

  32. Kobori H, Ichihara A, Suzuki H, Takenaka T, Miyashita Y, Hayashi M, Saruta T (1997) Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism. Am J Physiol 273:H593–H599

    CAS  PubMed  Google Scholar 

  33. Kuzman JA, Gerdes AM, Kobayashi S, Liang Q (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844

    Article  CAS  PubMed  Google Scholar 

  34. Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM (2005) l-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258

    Article  CAS  PubMed  Google Scholar 

  35. Ladenson PW, Bloch KD, Seidman JG (1988) Modulation of atrial natriuretic factor by thyroid hormone: messenger ribonucleic acid and peptide levels in hypothyroid, euthyroid, and hyperthyroid rat atria and ventricles. Endocrinology 123:652–657

    Article  CAS  PubMed  Google Scholar 

  36. Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG (2003) Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 278:15073–15083

    Article  CAS  PubMed  Google Scholar 

  37. Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223

    CAS  PubMed  Google Scholar 

  38. Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25

    CAS  PubMed  Google Scholar 

  39. Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J (2000) The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275:14466–14475

    Article  CAS  PubMed  Google Scholar 

  40. Moser M (2007) Hypertension treatment guidelines: is it time for an update? J Clin Hypertens 9:9–14

    Google Scholar 

  41. Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi-Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K (2004) Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation 109:242–248

    Article  CAS  PubMed  Google Scholar 

  42. Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260

    Article  CAS  PubMed  Google Scholar 

  43. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471

    Article  CAS  PubMed  Google Scholar 

  44. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  45. Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29

    Article  CAS  PubMed  Google Scholar 

  46. Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153:S137–S153

    Article  CAS  PubMed  Google Scholar 

  47. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471

    Article  CAS  PubMed  Google Scholar 

  48. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318

    Article  CAS  PubMed  Google Scholar 

  49. Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294

    Article  CAS  PubMed  Google Scholar 

  50. Paradis P, MacLellan WR, Belaguli NS, Schwartz RJ, Schneider MD (1996) Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem 271:10827–10833

    Article  CAS  PubMed  Google Scholar 

  51. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423

    CAS  PubMed  Google Scholar 

  52. Schaub MC, Hefti MA, Harder BA, Eppenberger HM (1997) Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920

    Article  CAS  PubMed  Google Scholar 

  53. Schmidt-Ott UM, Ascheim DD (2006) Thyroid hormone and heart failure. Curr Heart Fail Rep 3:114–119

    Article  CAS  PubMed  Google Scholar 

  54. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki H, Motley ED, Frank GD, Utsunomiya H, Eguchi S (2005) Recent progress in signal transduction research of the angiotensin II type-1 receptor: protein kinases, vascular dysfunction and structural requirement. Curr Med Chem Cardiovasc Hematol Agents 3:305–322

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M (1999) Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am J Physiol 276:H1927–H1934

    CAS  PubMed  Google Scholar 

  57. Tsuzuki S, Matoba T, Eguchi S, Inagami T (1996) Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916–918

    CAS  PubMed  Google Scholar 

  58. Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53

    Article  CAS  PubMed  Google Scholar 

  59. Varagic J, Frohlich ED (2002) Local cardiac renin-angiotensin system: hypertension and cardiac failure. J Mol Cell Cardiol 34:1435–1442

    Article  CAS  PubMed  Google Scholar 

  60. Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29:609–617

    Article  CAS  PubMed  Google Scholar 

  61. Wang B, Ouyang J, Xia Z (2006) Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: reversal of increased beta-myosin heavy chain gene expression. Can J Physiol Pharmacol 84:935–941

    Article  CAS  PubMed  Google Scholar 

  62. Wang J, Paradis P, Aries A, Komati H, Lefebvre C, Wang H, Nemer M (2005) Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Mol Cell Biol 25:9829–9844

    Article  CAS  PubMed  Google Scholar 

  63. Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Kottgen E, Gessner R (2005) Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39:1601–1610

    Article  CAS  PubMed  Google Scholar 

  64. Yin G, Yan C, Berk BC (2003) Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol 35:780–783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natássia Vieira and Dr. Mayana Zatz, both from the Neuromuscular Disease Research Center of the Institute of Biosciences of the University of São Paulo, for their assistance in performing the flow cytometry. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luiza Morais Barreto-Chaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, G.P., Carneiro-Ramos, M.S. & Barreto-Chaves, M.L.M. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathway. Basic Res Cardiol 104, 653–667 (2009). https://doi.org/10.1007/s00395-009-0043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0043-1

Keywords

Navigation