Skip to main content
Log in

Blockade of NF-κB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of specific NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) on inflammatory response and cardiac function in a rat model of coronary microembolization (CME). CME was developed by injecting a suspension of microthrombotic particles (MTPs) into the left ventricle when obstructing the ascending aorta. MTPs were generated from the rat clots sized by filtration through 38 μm screen. Thirty-two Sprague–Dawley rats served as sham group, 128 CME rats were randomized to untreated (CMEU) and PDTC-treated (CMEp) group. Rats in CMEp were administered intraperitoneally with 50, 100, 200 mg kg−1 day−1 PDTC, respectively, from 1 h before to 7 days after operation. The rats were sacrificed on day 1, 3, 7, 14 post-operationally and each subgroup consisted of eight rats. The general morphological characteristics were observed in sections with HE staining, and the severity of myocardial loss (SML) was determined by percent micro-necrotic area in sections with hematoxylin basic fuchsin picric (HBFP) staining 1 day or by percent micro-fibrotic area in sections with Masson’s trichrome staining 14 days post-operationally. Left ventricular (LV) function was evaluated echocardiographically and hemodynamically. Activity of NF-κB/DNA-binding was analyzed by electrophoresis mobility shift assays (EMSA), and expressions of TNF-α, IL-6, and ICAM-1 genes and proteins were detected by Real-time PCR and western blots, respectively. CME rats exhibited pathological changes evidenced by multi-focal myocardial necrosis, inflammatory cell infiltration with remarkably increased SML and persistent reduction of LV function. Activity of NF-κB/DNA-binding was markedly increased, also TNF-α, IL-6 and ICAM-1 transcripts and their protein expressions were upregulated strongly in the myocardium following CME. PDTC in a dose-dependency significantly suppressed the myocardial inflammatory cytokine transcriptions, decreased SML and improved LV function. Thus, NF-κB is markedly activated in CME hearts, and inhibition of NF-κB by PDTC prevents the subsequent inflammatory activation and improves cardiac function. Patients with or at risk of CME may benefit from acute anti-inflammatory treatment with PDTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adhikari N, Charles N, Lehmann U, Hall JL (2006) Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep 8:252–260

    Article  CAS  PubMed  Google Scholar 

  2. Almawi WY, Melemedjian OK (2002) Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol 28:69–78

    Article  CAS  PubMed  Google Scholar 

  3. Alpert JS, Thygesen K (2000) Myocardial infarction redefined a consensus document of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction. Eur Heart J 21:1502–1513

    Article  Google Scholar 

  4. Arca M, Gaspardone A (2007) Atorvastatin efficacy in the primary and secondary prevention of cardiovascular events. Drugs 67:29–42

    Article  CAS  PubMed  Google Scholar 

  5. Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47:87–131

    CAS  PubMed  Google Scholar 

  6. Böse D, von Birgelen C, Zhou XY, Schmermund A, Philipp S, Sack S, Konorza T, Möhlenkamp S, Leineweber K, Kleinbongard P, Wijns W, Heusch G, Erbel R (2008) Impact of atherosclerotic plaque composition on coronary microembolization during percutaneous coronary interventions. Basic Res Cardiol 103:587–597

    Article  PubMed  Google Scholar 

  7. Bramos D, Ikonomidis I, Tsirikos N, Kottis G, Kostopoulou V, Pamboucas C, Papadopoulou E, Venetsanou K, Giatrakos N, Yang GZ, Nihoyannopoulos P, Toumanidis S (2008) The association of coronary flow changes and inflammatory indices to ischaemia–reperfusion microvascular damage and left ventricular remodelling. Basic Res Cardiol 103:345–355

    Article  CAS  PubMed  Google Scholar 

  8. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909

    CAS  PubMed  Google Scholar 

  9. Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, Erbel R, Heusch G (2000) Perfusion–contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol 279:H2587–H2592

    PubMed  Google Scholar 

  10. Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol 34:51–62

    Article  PubMed  Google Scholar 

  11. Erbel R, Heusch Gerd (2002) Feature: coronary microembolization—its role in acute coronary syndromes and interventions. J Invasive Cardiol 14:49C–63C

    Google Scholar 

  12. Erbel R, Heusch G (1999) Spontaneous and iatrogenic microembolization. A new concept for the pathogenesis of coronary artery disease. Herz 24:493–495

    Article  CAS  PubMed  Google Scholar 

  13. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72

    Article  CAS  PubMed  Google Scholar 

  14. Gill RM, Jones BD, Corbly AK, Wang J, Braz JC, Sandusky GE, Wang J, Shen W (2006) Cardiac diastolic dysfunction in conscious dogs with heart failure induced by chronic coronary microembolization. Am J Physiol Heart Circ Physiol 291:H3154–H3158

    Article  CAS  PubMed  Google Scholar 

  15. Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH, Entman ML (1999) Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99:546–551

    CAS  PubMed  Google Scholar 

  16. Herrmann J, Lerman A, Baumgart D, Volbracht L, Schulz R, von Birgelen C, Haude M, Heusch G, Erbel R (2002) Preprocedural statin medication reduces the extent of periprocedural non-q-wave myocardial infarction. Circulation 106:2180–2183

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann J (2005) Peri-procedural myocardial injury: 2005 update. Eur Heart J 26:2493–2519

    Article  PubMed  Google Scholar 

  18. Heusch G, Schulz R (2003) Heart 89:981–982 (© 2003 by BMJ Publishing Group & British Cardiac Society Pathophysiology of coronary microembolisation)

    Google Scholar 

  19. Heusch G, Schulz R, Haude M, Erbel R (2004) Coronary microembolization. J Mol Cell Cardiol 37:23–31

    Article  CAS  PubMed  Google Scholar 

  20. Huang Y, Hunyor SN, Jiang L, Kawaguchi O, Shirota K, Ikeda Y, Yuasa T, Gallagher G, Zeng B, Zheng X (2004) Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural, and cellular responses. Am J Physiol Heart Circ Physiol 286:H2141–H2150

    Article  CAS  PubMed  Google Scholar 

  21. Kawano H, Hayashida T, Ohtani H, Kanda M, Koide Y, Baba T, Toda G, Shimokawa I, Yano K, Okada R (2005) Histopathological findings of the no-reflow phenomenon following coronary intervention for acute coronary syndrome. Int Heart J 46:327–332

    Article  PubMed  Google Scholar 

  22. Kudo M, Aoyama A, Ichimori S, Fukunaga N (1982) An animal model of cerebral infarction-homologous blood clot emboli in rats. Stroke 13:505–508

    CAS  PubMed  Google Scholar 

  23. Lee KW, Norell MS (2008) Management of ‘no-reflow’ complicating reperfusion therapy. Acute Card Care 10:5–14

    Article  PubMed  Google Scholar 

  24. Li C, Browder W, Kao RL (1999) Early activation of transcription factor NF-kappa B during ischemia in perfused rat heart. Am J Physiol 276:H543–H552

    CAS  PubMed  Google Scholar 

  25. Liu SF, Ye X, Malik AB (1999) Inhibition of NF-κB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100:1330–1337

    CAS  PubMed  Google Scholar 

  26. Liu SF, Ye X, Malik AB (1999) Pyrrolidine dithiocarbamate prevents I-kappaB degradation and reduced microvascular injure induced by lipopolysacchatide in multiple organs. Mol Pharmacol 55:658–667

    CAS  PubMed  Google Scholar 

  27. Liu X, Shen J, Jin Y, Duan M, Xu J (2006) Recombinant human erythropoietin (rhEPO) preconditioning on nuclear factor-kappa B (NF-kB) activation & proinflammatory cytokines induced by myocardial ischaemia–reperfusion. Indian J Med 124:343–354

    CAS  Google Scholar 

  28. Liuzzo G, Santamaria M, Biasucci LM, Narducci M, Colafrancesco V, Porto A, Brugaletta S, Pinnelli M, Rizzello V, Maseri A, Crea F (2007) Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocyte via nuclear factor kappa-B activation. J Am Coll Cardiol 49:195–197

    Article  Google Scholar 

  29. Lu L, Chen SS, Zhang JQ, Ramires FJ, Sun Y (2004) Activation of nuclear factor-kappaB and its proinflammatory mediator cascade in the infarcted rat heart. Biochem Biophys Res Commun 321:879–885

    Article  CAS  PubMed  Google Scholar 

  30. Meyer M, Schreck R, Bacuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12:2005–2015

    CAS  PubMed  Google Scholar 

  31. Michael E, Ritchie MD (1998) Nuclear factor-κb is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98:1707–1713

    Google Scholar 

  32. Michałek A (2007) Results of ARMYDA-ACS trial show good outcome of 80 mg atorvastatin pretreatment in patients with acute coronary syndromes undergoing early percutaneous coronary intervention. Kardiol Pol 65:851–852

    PubMed  Google Scholar 

  33. Monroe RG, LaFarge CG, Gamble WJ, Kumar AE, Manasek FJ (1971) Left ventricular performance and coronary flow after coronary embolization with plastic microspheres. J Clin Invest 50:1656–1665

    Article  CAS  PubMed  Google Scholar 

  34. Mood GR, Bavry AA, Roukoz H, Bhatt DL (2007) Meta-analysis of the role of statin therapy in reducing myocardial infarction following elective percutaneous coronary intervention. Am J Cardiol 100:919–923

    Article  CAS  PubMed  Google Scholar 

  35. Nigam A, Kopecky SL (2002) Therapeutic potential of monoclonal antibodies in myocardial reperfusion injury. Am J Cardiovasc Drugs 2:367–376

    Article  CAS  PubMed  Google Scholar 

  36. Ono K, Masuyama T, Yamamoto K, Doi R, Sakata Y, Nishikawa N, Mano T, Kuzuya T, Takeda H, Hori M (2002) Echo doppler assessment of left ventricular function in rats with hypertensive hypertrophy. J Am Soc Echocardiogr 15:109–117

    Article  PubMed  Google Scholar 

  37. Pasceri V, Patti G, Di Sciascio G (2006) Prevention of myocardial damage during coronary intervention. Cardiovasc Hematol Disord Drug Targets 6:77–83

    CAS  PubMed  Google Scholar 

  38. Patti G, Pasceri V, Colonna G, Miglionico M, Fischetti D, Sardella G, Montinaro A, Di Sciascio G (2007) Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDA-ACS randomized trial. J Am Coll Cardiol 49:1272–1278

    Article  CAS  PubMed  Google Scholar 

  39. Roberts R, DeMello V (1976) Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53: I-204–I-206

  40. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol Heart Circ Physiol 29:H1379–H1384

    Google Scholar 

  41. Scherck R, Meier B, Männel DN, Dröge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor κB activation in intact cells. J Exp Med 175:1181–1194

    Article  Google Scholar 

  42. Schulz R, Heusch G (2009) Tumor necrosis factor-α and its receptors 1 and 2 yin and yang in myocardial infarction? Circulation 119:1355–1377

    Article  PubMed  Google Scholar 

  43. Sciascio GD, Patti G, Pasceri V et al (2009) ARMYDA-RECAPTURE (Atorvastatin for Reduction of Myocardial Damage during Angioplasty) trial-Prospective, multicenter, randomized, double blind trial investigating efficacy of atorvastatin reload in patients on chronic statin therapy undergoing PCI. ACC 2009

  44. Skyschally A, Gres P, van Caster P, van de Sand A, Boengler K, Schulz R, Heusch G (2008) Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization. Basic Res Cardiol 103:552–559

    Article  PubMed  Google Scholar 

  45. Skyschally A, Haude M, Dörge H, Thielmann M, Duschin A, van de Sand A, Konietzka I, Büchert A, Aker S, Massoudy P, Schulz R, Erbel R, Heusch G (2004) Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary microembolization. Circulation 109:2337–2342

    Article  CAS  PubMed  Google Scholar 

  46. Skyschally A, Leineweber K, Gres P, Haude M, Erbel R, Heusch G (2006) Coronary microembolization. Basic Res 101:373–382

    Article  Google Scholar 

  47. Skyschally A, Schulz R, Haude M, Erbel R, Heusch G (2004) Coronary microembolization: perfusion–contraction mismatch secondary to myocardial inflammation. Herz 29:777–781

    Article  PubMed  Google Scholar 

  48. Timothy S, Blackwell, Christman JW (1997) The role of nuclear factor-κB in cytokin gene regulation. Am J Respir Cell Mol Biol 17: 3–9

  49. Valero SJ, Moreno R, Reves RM, Recalde AS, Galeote G, Calvo L, Villate A, Sendón JL (2008) Pharmacological approach of no-reflow phenomenon related with percutaneous coronary interventions. Cardiovasc Hematol Agents Med Chem 6:125–129

    Article  CAS  PubMed  Google Scholar 

  50. Wilson SH, Best PJ, Edwards WD, Holmes DR Jr, Carlson PJ, Celermajer DS, Lerman A (2002) Nuclear factor-kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectorsis. Atherosclerosis 160:147–153

    Article  CAS  PubMed  Google Scholar 

  51. Xie HQ, Choi RC, Leung KW, Siow NL, Kong LW, Lau FT, Peng HB, Tsim KW (2007) Regulation of a transcript-encoding the proline-rich membrane anchor (PRiMA) of globular muscle acetylcholinesterase: the suppressive roles of myogenesis and innervating nerves. J Biol Chem 282:11765–11775

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianglong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Zhong, S., Zeng, K. et al. Blockade of NF-κB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105, 139–150 (2010). https://doi.org/10.1007/s00395-009-0067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0067-6

Keywords

Navigation