Skip to main content
Log in

Intracellular [Na+] modulates synergy between Na+/Ca2+ exchanger and L-type Ca2+ current in cardiac excitation–contraction coupling during action potentials

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Excitation–contraction coupling (ECC) in cardiac myocytes involves triggering of Ca2+ release from the sarcoplasmic reticulum (SR) by L-type Ca channels, whose activity is strongly influenced by action potential (AP) profile. The contribution of Ca2+ entry via the Na+/Ca2+ exchanger (NCX) to trigger SR Ca2+ release during ECC in response to an AP remains uncertain. To isolate the contribution of NCX to SR Ca2+ release, independent of effects on SR Ca2+ load, Ca2+ release was determined by recording Ca2+ spikes using confocal microscopy on patch-clamped rat ventricular myocytes with [Ca2+]i fixed at 150 nmol/L. In response to AP clamps, normalized Ca2+ spike amplitudes (ΔF/F 0) increased sigmoidally and doubled as [Na+]i was elevated from 0 to 20 mmol/L with an EC50 of ~10 mmol/L. This [Na+]i-dependence was independent of I Na as well as SR Ca2+ load, which was unchanged under our experimental conditions. However, NCX inhibition using either KB-R7943 or XIP reduced ΔF/F 0 amplitude in myocytes with 20 mmol/L [Na+]i, but not with 5 mmol/L [Na+]i. SR Ca2+ release was complete before the membrane repolarized to −15 mV, indicating Ca2+ entry into the dyad (not reduced extrusion) underlies [Na+]i-dependent enhancement of ECC. Because I Ca,L inhibition with 50 mmol/L Cd2+ abolished Ca2+ spikes, our results demonstrate that during cardiac APs, NCX enhances SR Ca2+ release by synergistically increasing the efficiency of I Ca,L-mediated ECC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium–calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53. doi:10.1161/01.RES.0000080932.98903.D8

    Article  PubMed  CAS  Google Scholar 

  2. Bassani JW, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293

    PubMed  CAS  Google Scholar 

  3. Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274. doi:10.1016/S0735-1097(02)02160-5

    Article  PubMed  CAS  Google Scholar 

  4. Berlin JR, Cannell MB, Lederer WJ (1987) Regulation of twitch tension in sheep cardiac Purkinje fibers during calcium overload. Am J Physiol 253:H1540–H1547

    PubMed  CAS  Google Scholar 

  5. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. doi:10.1038/415198a

    Article  PubMed  CAS  Google Scholar 

  6. Bers DM (2002) Excitation–contraction coupling and cardiac contractile force. Kluwer, Dordrecht

    Google Scholar 

  7. Bouchard RA, Clark RB, Giles WR (1993) Role of sodium–calcium exchange in activation of contraction in rat ventricle. J Physiol 472:391–413

    PubMed  CAS  Google Scholar 

  8. Chin TK, Spitzer KW, Philipson KD, Bridge JH (1993) The effect of exchanger inhibitory peptide (XIP) on sodium–calcium exchange current in guinea pig ventricular cells. Circ Res 72:497–503. doi:10.1161/01.RES.72.3.497

    PubMed  CAS  Google Scholar 

  9. Choi HS, Eisner DA (1999) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J Physiol 515(Pt 1):109–118. doi:10.1111/j.1469-7793.1999.109ad.x

    Article  PubMed  CAS  Google Scholar 

  10. Copello JA, Barg S, Onoue H, Fleischer S (1997) Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J 73:141–156. doi:10.1016/S0006-3495(97)78055-X

    Article  PubMed  CAS  Google Scholar 

  11. Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J Physiol 539:133–143. doi:10.1113/jphysiol.2001.012940

    Article  PubMed  CAS  Google Scholar 

  12. Evans AM, Cannell MB (1997) The role of L-type Ca2+ current and Na+ current-stimulated Na/Ca exchange in triggering SR calcium release in guinea-pig cardiac ventricular myocytes. Cardiovasc Res 35:294–302. doi:10.1016/S0008-6363(97)00117-X

    Article  PubMed  CAS  Google Scholar 

  13. Ferrier GR, Howlett SE (2001) Cardiac excitation–contraction coupling: role of membrane potential in regulation of contraction. Am J Physiol Heart Circ Physiol 280:H1928–H1944

    PubMed  CAS  Google Scholar 

  14. Goldhaber JI, Lamp ST, Walter DO, Garfinkel A, Fukumoto GH, Weiss JN (1999) Local regulation of the threshold for calcium sparks in rat ventricular myocytes: role of sodium–calcium exchange. J Physiol 520(Pt 2):431–438. doi:10.1111/j.1469-7793.1999.00431.x

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths H, MacLeod KT (2003) The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release. J Gen Physiol 121:353–373. doi:10.1085/jgp.200208764

    Article  PubMed  CAS  Google Scholar 

  16. Gyorke I, Gyorke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75:2801–2810. doi:10.1016/S0006-3495(98)77723-9

    Article  PubMed  CAS  Google Scholar 

  17. Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, Chantawansri C, Ritter MR, Friedlander M, Nicoll DA, Frank JS, Jordan MC, Roos KP, Ross RS, Philipson KD (2004) Functional adult myocardium in the absence of Na+–Ca2+ exchange: cardiac-specific knockout of NCX1. Circ Res 95:604–611. doi:10.1161/01.RES.0000142316.08250.68

    Article  PubMed  CAS  Google Scholar 

  18. Hilgemann DW, Matsuoka S, Nagel GA, Collins A (1992) Steady-state and dynamic properties of cardiac sodium–calcium exchange. Sodium-dependent inactivation. J Gen Physiol 100:905–932. doi:10.1085/jgp.100.6.905

    Article  PubMed  CAS  Google Scholar 

  19. Hobai IA, Bates JA, Howarth FC, Levi AJ (1997) Inhibition by external Cd2+ of Na/Ca exchange and L-type Ca channel in rabbit ventricular myocytes. Am J Physiol 272:H2164–H2172

    PubMed  CAS  Google Scholar 

  20. Hobai IA, O’Rourke B (2000) Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circ Res 87:690–698. doi:10.1161/01.RES.87.8.690

    PubMed  CAS  Google Scholar 

  21. Huang J, Hove-Madsen L, Tibbits GF (2008) Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes. Am J Physiol Cell Physiol 294:C516–C525. doi:10.1152/ajpcell.00417.2007

    Article  PubMed  CAS  Google Scholar 

  22. Larbig R, Torres N, Bridge JH, Goldhaber JI, Philipson KD (2010) Activation of reverse Na+–Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J Physiol 588:3267–3276. doi:10.1113/jphysiol.2010.187708

    Article  PubMed  CAS  Google Scholar 

  23. Leblanc N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372–376. doi:10.1126/science.2158146

    Article  PubMed  CAS  Google Scholar 

  24. Lipp P, Niggli E (1994) Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J Physiol 474:439–446

    PubMed  CAS  Google Scholar 

  25. Litwin SE, Li J, Bridge JH (1998) Na–Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J 75:359–371. doi:10.1016/S0006-3495(98)77520-4

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045. doi:10.1126/science.7754383

    Article  PubMed  CAS  Google Scholar 

  27. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392. doi:10.1007/s00395-007-0666-z

    Google Scholar 

  28. Maier LS, Pieske B, Allen DG (1997) Influence of stimulation frequency on [Na+]i and contractile function in Langendorff-perfused rat heart. Am J Physiol 273:H1246–H1254

    PubMed  CAS  Google Scholar 

  29. Matsuoka S, Hilgemann DW (1992) Steady-state and dynamic properties of cardiac sodium–calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol 100:963–1001. doi:10.1085/jgp.100.6.963

    Article  PubMed  CAS  Google Scholar 

  30. Matsuoka S, Nicoll DA, He Z, Philipson KD (1997) Regulation of cardiac Na(+)–Ca2+ exchanger by the endogenous XIP region. J Gen Physiol 109:273–286. doi:10.1085/jgp.109.2.273

    Article  PubMed  CAS  Google Scholar 

  31. Mattiello JA, Margulies KB, Jeevanandam V, Houser SR (1998) Contribution of reverse-mode sodium–calcium exchange to contractions in failing human left ventricular myocytes. Cardiovasc Res 37:424–431. doi:10.1016/S0008-6363(97)00271-X

    Article  PubMed  CAS  Google Scholar 

  32. Miura Y, Kimura J (1989) Sodium–calcium exchange current. Dependence on internal Ca and Na and competitive binding of external Na and Ca. J Gen Physiol 93:1129–1145. doi:10.1085/jgp.93.6.1129

    Article  PubMed  CAS  Google Scholar 

  33. Nabauer M, Callewaert G, Cleemann L, Morad M (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:800–803. doi:10.1126/science.2543067

    Article  PubMed  CAS  Google Scholar 

  34. Neco P, Rose B, Huynh N, Zhang R, Bridge JH, Philipson KD, Goldhaber JI (2010) Sodium–calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys J 99:755–764. doi:10.1016/j.bpj.2010.04.071

    Article  PubMed  CAS  Google Scholar 

  35. Nuss HB, Houser SR (1992) Sodium–calcium exchange-mediated contractions in feline ventricular myocytes. Am J Physiol 263:H1161–H1169

    PubMed  CAS  Google Scholar 

  36. O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84:562–570. doi:10.1161/01.RES.84.5.562

    PubMed  Google Scholar 

  37. Ottolia M, Philipson KD, John S (2004) Conformational changes of the Ca2+ regulatory site of the Na+–Ca2+ exchanger detected by FRET. Biophys J 87:899–906. doi:10.1529/biophysj.104.043471

    Article  PubMed  CAS  Google Scholar 

  38. Pandit SV, Clark RB, Giles WR, Demir SS (2001) A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J 81:3029–3051. doi:10.1016/S0006-3495(01)75943-7

    Article  PubMed  CAS  Google Scholar 

  39. Perez NG, Villa-Abrille MC, Aiello EA, Dulce RA, Cingolani HE, Camilion de Hurtado MC (2003) A low dose of angiotensin II increases inotropism through activation of reverse Na(+)/Ca(2+) exchange by endothelin release. Cardiovasc Res 60:589–597. doi:10.1016/j.cardiores.2003.09.004

    Article  PubMed  CAS  Google Scholar 

  40. Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558. doi:10.1016/S0896-6273(00)80709-6

    Article  PubMed  CAS  Google Scholar 

  41. Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106:447–453. doi:10.1161/01.CIR.0000023042.50192.F4

    Article  PubMed  CAS  Google Scholar 

  42. Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019. doi:10.1161/01.RES.85.11.1009

    PubMed  CAS  Google Scholar 

  43. Remme CA, Verkerk AO, Hoogaars WM, Aanhaanen WT, Scicluna BP, Annink C, van den Hoff MJ, Wilde AA, van Veen TA, Veldkamp MW, de Bakker JM, Christoffels VM, Bezzina CR (2009) The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res Cardiol 104:511–522. doi:10.1007/s00395-009-0012-8

    Article  PubMed  CAS  Google Scholar 

  44. Reuter H, Henderson SA, Han T, Ross RS, Goldhaber JI, Philipson KD (2002) The Na+–Ca2+ exchanger is essential for the action of cardiac glycosides. Circ Res 90:305–308. doi:10.1161/hh0302.104562

    Article  PubMed  CAS  Google Scholar 

  45. Sah R, Ramirez RJ, Backx PH (2002) Modulation of Ca(2+) release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation–contraction coupling. Circ Res 90:165–173. doi:10.1161/hh0202.103315

    Article  PubMed  CAS  Google Scholar 

  46. Sah R, Ramirez RJ, Kaprielian R, Backx PH (2001) Alterations in action potential profile enhance excitation–contraction coupling in rat cardiac myocytes. J Physiol 533:201–214. doi:10.1111/j.1469-7793.2001.0201b.x

    Article  PubMed  CAS  Google Scholar 

  47. Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 546:5–18. doi:10.1113/jphysiol.2002.026468

    Article  PubMed  CAS  Google Scholar 

  48. Satoh H, Delbridge LM, Blatter LA, Bers DM (1996) Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 70:1494–1504. doi:10.1016/S0006-3495(96)79711-4

    Article  PubMed  CAS  Google Scholar 

  49. Scriven DR, Dan P, Moore ED (2000) Distribution of proteins implicated in excitation–contraction coupling in rat ventricular myocytes. Biophys J 79:2682–2691. doi:10.1016/S0006-3495(00)76506-4

    Article  PubMed  CAS  Google Scholar 

  50. Sedova M, Dedkova EN, Blatter LA (2006) Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol 291:C840–C850. doi:10.1152/ajpcell.00619.2005

    Article  PubMed  CAS  Google Scholar 

  51. Sham JS, Cleemann L, Morad M (1992) Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na(+)–Ca2+ exchange. Science 255:850–853. doi:10.1126/science.1311127

    Article  PubMed  CAS  Google Scholar 

  52. Shannon TR, Bers DM (1997) Assessment of intra-SR free [Ca] and buffering in rat heart. Biophys J 73:1524–1531. doi:10.1016/S0006-3495(97)78184-0

    Article  PubMed  CAS  Google Scholar 

  53. Sipido KR, Maes M, Van de Werf F (1997) Low efficiency of Ca2+ entry through the Na(+)–Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)–Ca2+ exchange. Circ Res 81:1034–1044. doi:10.1161/01.RES.81.6.1034

    PubMed  CAS  Google Scholar 

  54. Sobie EA, Cannell MB, Bridge JH (2008) Allosteric activation of Na+–Ca2+ exchange by L-type Ca2+ current augments the trigger flux for SR Ca2+ release in ventricular myocytes. Biophys J 94:L54–L56. doi:10.1529/biophysj.107.127878

    Article  PubMed  CAS  Google Scholar 

  55. Song LS, Sham JS, Stern MD, Lakatta EG, Cheng H (1998) Direct measurement of SR release flux by tracking ‘Ca2+ spikes’ in rat cardiac myocytes. J Physiol 512(Pt 3):677–691. doi:10.1111/j.1469-7793.1998.677bd.x

    Article  PubMed  CAS  Google Scholar 

  56. Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H (1994) Gene expression of the cardiac Na(+)–Ca2+ exchanger in end-stage human heart failure. Circ Res 75:443–453. doi:10.1161/01.RES.75.3.443

    PubMed  CAS  Google Scholar 

  57. Tanaka H, Nishimaru K, Aikawa T, Hirayama W, Tanaka Y, Shigenobu K (2002) Effect of SEA0400, a novel inhibitor of sodium–calcium exchanger, on myocardial ionic currents. Br J Pharmacol 135:1096–1100. doi:10.1038/sj.bjp.0704574

    Article  PubMed  CAS  Google Scholar 

  58. Toischer K, Lehnart SE, Tenderich G, Milting H, Korfer R, Schmitto JD, Schondube FA, Kaneko N, Loughrey CM, Smith GL, Hasenfuss G, Seidler T (2010) K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol 105:279–287. doi:10.1007/s00395-009-0057-8

    Article  PubMed  CAS  Google Scholar 

  59. Varro A, Negretti N, Hester SB, Eisner DA (1993) An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes. Pflugers Arch 423:158–160. doi:10.1007/BF00374975

    Article  PubMed  CAS  Google Scholar 

  60. Viatchenko-Karpinski S, Gyorke S (2001) Modulation of the Ca(2+)-induced Ca(2+) release cascade by beta-adrenergic stimulation in rat ventricular myocytes. J Physiol 533:837–848. doi:10.1111/j.1469-7793.2001.t01-1-00837.x

    Article  PubMed  CAS  Google Scholar 

  61. Viatchenko-Karpinski S, Terentyev D, Jenkins LA, Lutherer LO, Gyorke S (2005) Synergistic interactions between Ca2+ entries through L-type Ca2+ channels and Na+–Ca2+ exchanger in normal and failing rat heart. J Physiol 567:493–504. doi:10.1113/jphysiol.2005.091280

    Article  PubMed  CAS  Google Scholar 

  62. Vornanen M, Shepherd N, Isenberg G (1994) Tension-voltage relations of single myocytes reflect Ca release triggered by Na/Ca exchange at 35 degrees C but not 23 degrees C. Am J Physiol 267:C623–C632

    PubMed  CAS  Google Scholar 

  63. Wasserstrom JA, Vites AM (1996) The role of Na(+)–Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes. J Physiol 493(Pt 2):529–542

    PubMed  CAS  Google Scholar 

  64. Watano T, Kimura J, Morita T, Nakanishi H (1996) A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 119:555–563

    PubMed  CAS  Google Scholar 

  65. Weber CR, Ginsburg KS, Bers DM (2003) Cardiac submembrane [Na+] transients sensed by Na+–Ca2+ exchange current. Circ Res 92:950–952. doi:10.1161/01.RES.0000071747.61468.7F

    Article  PubMed  CAS  Google Scholar 

  66. Weber CR, Piacentino V 3rd, Ginsburg KS, Houser SR, Bers DM (2002) Na(+)–Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res 90:182–189. doi:10.1161/hh0202.103940

    Article  PubMed  CAS  Google Scholar 

  67. Weber CR, Piacentino V 3rd, Houser SR, Bers DM (2003) Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108:2224–2229. doi:10.1161/01.CIR.0000095274.72486.94

    Article  PubMed  CAS  Google Scholar 

  68. Weisser-Thomas J, Piacentino V 3rd, Gaughan JP, Margulies K, Houser SR (2003) Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovasc Res 57:974–985. doi:10.1016/S0008-6363(02)00732-0

    Article  PubMed  CAS  Google Scholar 

  69. Yang Z, Pascarel C, Steele DS, Komukai K, Brette F, Orchard CH (2002) Na+–Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res 91:315–322. doi:10.1161/01.RES.0000030180.06028.23

    Article  PubMed  CAS  Google Scholar 

  70. Yao A, Su Z, Nonaka A, Zubair I, Lu L, Philipson KD, Bridge JH, Barry WH (1998) Effects of overexpression of the Na+–Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes. Circ Res 82:657–665. doi:10.1161/01.RES.82.6.657

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Heart and Stroke Foundation of Ontario (T-6485) and the Canadian Institutes of Health Research (MOP-62954). PHB is a Career Investigator with the Heart and Stroke Foundation of Ontario. RJR is the recipient of a Heart and Stroke Foundation of Canada Doctoral Research Award, and a Peterborough K.M. Hunter Graduate Studentship (University of Toronto, Faculty of Medicine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Backx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, R.J., Sah, R., Liu, J. et al. Intracellular [Na+] modulates synergy between Na+/Ca2+ exchanger and L-type Ca2+ current in cardiac excitation–contraction coupling during action potentials. Basic Res Cardiol 106, 967–977 (2011). https://doi.org/10.1007/s00395-011-0202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0202-z

Keywords

Navigation