Skip to main content
Erschienen in: Basic Research in Cardiology 6/2014

01.11.2014 | Original Contribution

Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue

verfasst von: Birgit Andrée, Katharina Bela, Tibor Horvath, Marco Lux, Robert Ramm, Letizia Venturini, Anatol Ciubotaru, Robert Zweigerdt, Axel Haverich, Andres Hilfiker

Erschienen in: Basic Research in Cardiology | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Generating cellularized 3D constructs with clinical relevant dimensions is challenged by nutrition supply. This is of utmost importance for cardiac tissue engineering, since cardiomyocytes are extremely sensitive to malnutrition and hypoxia in vitro and after implantation. To develop a perfusable myocardial patch, we have focused on seeding a decellularized biological vascularized matrix (BioVaM) with endothelial cells. BioVaM is produced by decellularization of porcine small intestinal segments with preserved arterial and venous pedicles, which can be connected to a perfusion system in vitro or the host vasculature in vivo. The BioVaM vessel bed was re-seeded with porcine primary endothelial cells (pCEC). Seeding efficiency was influenced by detergent composition used for decellularization (sodium dodecyl sulfate (SDS) and/or Triton X-100) and the medium composition used for re-seeding. After decellularization, residual SDS was detected in the matrix affecting the survival of pCEC which showed a low tolerance to SDS and Triton X-100. Sensitivity to detergents was attenuated by supplementation of the medium with bovine serum albumin (BSA) or fetal calf serum (FCS). Pre-conditioning of the BioVaM with 20 % FCS was not sufficient to attain pCEC survival in the vascular bed. However, re-cellularization was achieved by prolonged FCS supplementation during cultivation, resulting in a perfusable, re-endothelialized matrix of 11 cm2 in size. This achievement represents a promising step towards engineering of perfusable, 3D cardiac constructs with clinically relevant dimensions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Bär A, Dorfman SE, Fischer P, Hilfiker-Kleiner D, Cebotari S, Tudorache I, Suprunov M, Haverich A, Hilfiker A (2010) The pro-angiogenic factor CCN1 enhances the re-endothelialization of biological vascularized matrices in vitro. Cardiovasc Res 85:806–813. doi:10.1093/cvr/cvp370 PubMedCrossRef Bär A, Dorfman SE, Fischer P, Hilfiker-Kleiner D, Cebotari S, Tudorache I, Suprunov M, Haverich A, Hilfiker A (2010) The pro-angiogenic factor CCN1 enhances the re-endothelialization of biological vascularized matrices in vitro. Cardiovasc Res 85:806–813. doi:10.​1093/​cvr/​cvp370 PubMedCrossRef
5.
Zurück zum Zitat Bonvillain RW, Scarritt ME, Pashos NC, Mayeux JP, Meshberger CL, Betancourt AM, Sullivan DE, Bunnell BA (2013) Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J Vis Exp. doi:10.3791/50825 PubMed Bonvillain RW, Scarritt ME, Pashos NC, Mayeux JP, Meshberger CL, Betancourt AM, Sullivan DE, Bunnell BA (2013) Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J Vis Exp. doi:10.​3791/​50825 PubMed
6.
Zurück zum Zitat Caamano S, Shiori A, Strauss SH, Orton EC (2009) Does sodium dodecyl sulfate wash out of detergent-treated bovine pericardium at cytotoxic concentrations? J Heart Valve Dis 18:101–105PubMed Caamano S, Shiori A, Strauss SH, Orton EC (2009) Does sodium dodecyl sulfate wash out of detergent-treated bovine pericardium at cytotoxic concentrations? J Heart Valve Dis 18:101–105PubMed
7.
Zurück zum Zitat Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W, Haverich A, Lichtenberg A (2010) Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 34:206–210. doi:10.1111/j.1525-1594.2009.00796.x PubMedCrossRef Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W, Haverich A, Lichtenberg A (2010) Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 34:206–210. doi:10.​1111/​j.​1525-1594.​2009.​00796.​x PubMedCrossRef
9.
Zurück zum Zitat Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, Grez M, Thrasher AJ (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813. doi:10.1089/10430340252898984 PubMedCrossRef Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, Grez M, Thrasher AJ (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813. doi:10.​1089/​1043034025289898​4 PubMedCrossRef
12.
Zurück zum Zitat Harrison RD, Gratzer PF (2005) Effect of extraction protocols and epidermal growth factor on the cellular repopulation of decellularized anterior cruciate ligament allografts. J Biomed Mater Res A 75:841–854. doi:10.1002/jbm.a.30486 PubMedCrossRef Harrison RD, Gratzer PF (2005) Effect of extraction protocols and epidermal growth factor on the cellular repopulation of decellularized anterior cruciate ligament allografts. J Biomed Mater Res A 75:841–854. doi:10.​1002/​jbm.​a.​30486 PubMedCrossRef
14.
Zurück zum Zitat Hofmann AD, Hilfiker A, Haverich A, Andree B, Kuebler J, Ure B (2014) BioVaM in the rat model: a new approach of vascularized 3D tissue for esophageal replacement. Eur J Pediatr Surg. doi:10.1055/s-0034-1370778 Hofmann AD, Hilfiker A, Haverich A, Andree B, Kuebler J, Ure B (2014) BioVaM in the rat model: a new approach of vascularized 3D tissue for esophageal replacement. Eur J Pediatr Surg. doi:10.​1055/​s-0034-1370778
16.
Zurück zum Zitat Kawazoye S, Tian SF, Toda S, Takashima T, Sunaga T, Fujitani N, Higashino H, Matsumura S (1995) The mechanism of interaction of sodium dodecyl-sulfate with elastic fibers. J Biochem 117:1254–1260PubMed Kawazoye S, Tian SF, Toda S, Takashima T, Sunaga T, Fujitani N, Higashino H, Matsumura S (1995) The mechanism of interaction of sodium dodecyl-sulfate with elastic fibers. J Biochem 117:1254–1260PubMed
17.
Zurück zum Zitat Kohler EE, Wary KK, Li F, Chatterjee I, Urao N, Toth PT, Ushio-Fukai M, Rehman J, Park C, Malik AB (2013) Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells. PLoS One 8:e85549. doi:10.1371/journal.pone.0085549 PubMedCentralPubMedCrossRef Kohler EE, Wary KK, Li F, Chatterjee I, Urao N, Toth PT, Ushio-Fukai M, Rehman J, Park C, Malik AB (2013) Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells. PLoS One 8:e85549. doi:10.​1371/​journal.​pone.​0085549 PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Krivinka M, Vinklarek Z, Krejci J (1997) Heterogeneous surfactant—collagen interaction. Tenside Surfact Det 34:22–27 Krivinka M, Vinklarek Z, Krejci J (1997) Heterogeneous surfactant—collagen interaction. Tenside Surfact Det 34:22–27
23.
Zurück zum Zitat Makino S, Reynolds JA, Tanford C (1973) The binding of deoxycholate and Triton X-100 to proteins. J Biol Chem 248:4926–4932PubMed Makino S, Reynolds JA, Tanford C (1973) The binding of deoxycholate and Triton X-100 to proteins. J Biol Chem 248:4926–4932PubMed
26.
Zurück zum Zitat Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127:399–405. doi:10.1016/j.jtcvs.2003.06.017 PubMedCrossRef Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127:399–405. doi:10.​1016/​j.​jtcvs.​2003.​06.​017 PubMedCrossRef
29.
Zurück zum Zitat Schultheiss D, Gabouev AI, Kaufmann PM, Schlote N, Mertsching H, Haverich A, Stief CG, Jonas U (2004) Biological vascularized matrix (BioVaM): a new method for solving the perfusion problems in tissue engineering. Urologe A 43:1223–1228. doi:10.1007/s00120-004-0702-7 PubMedCrossRef Schultheiss D, Gabouev AI, Kaufmann PM, Schlote N, Mertsching H, Haverich A, Stief CG, Jonas U (2004) Biological vascularized matrix (BioVaM): a new method for solving the perfusion problems in tissue engineering. Urologe A 43:1223–1228. doi:10.​1007/​s00120-004-0702-7 PubMedCrossRef
31.
Zurück zum Zitat Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, Yamanaka S, Nakao K (2009) Induction and isolation of vascular cells from human induced pluripotent stem cells–brief report. Arterioscler Thromb Vascular Biol 29:1100–1103. doi:10.1161/ATVBAHA.108.182162 CrossRef Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, Yamanaka S, Nakao K (2009) Induction and isolation of vascular cells from human induced pluripotent stem cells–brief report. Arterioscler Thromb Vascular Biol 29:1100–1103. doi:10.​1161/​ATVBAHA.​108.​182162 CrossRef
33.
Zurück zum Zitat Vukadinovic-Nikolic Z, Andrée B, Dorfman SE, Pflaum M, Horvath T, Lux M, Venturini L, Bar A, Kensah G, Lara AR, Tudorache I, Cebotari S, Hilfiker-Kleiner D, Haverich A, Hilfiker A (2014) Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa. Tissue Eng Part A 20:799–809. doi:10.1089/ten.TEA.2013.0184 PubMed Vukadinovic-Nikolic Z, Andrée B, Dorfman SE, Pflaum M, Horvath T, Lux M, Venturini L, Bar A, Kensah G, Lara AR, Tudorache I, Cebotari S, Hilfiker-Kleiner D, Haverich A, Hilfiker A (2014) Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa. Tissue Eng Part A 20:799–809. doi:10.​1089/​ten.​TEA.​2013.​0184 PubMed
34.
Zurück zum Zitat Zorn-Kruppa M, Tykhonova S, Belge G, Diehl HA, Engelke M (2004) Comparison of human corneal cell cultures in cytotoxicity testing. Altex 21:129–134PubMed Zorn-Kruppa M, Tykhonova S, Belge G, Diehl HA, Engelke M (2004) Comparison of human corneal cell cultures in cytotoxicity testing. Altex 21:129–134PubMed
35.
Zurück zum Zitat Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedCentralPubMed Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedCentralPubMed
Metadaten
Titel
Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue
verfasst von
Birgit Andrée
Katharina Bela
Tibor Horvath
Marco Lux
Robert Ramm
Letizia Venturini
Anatol Ciubotaru
Robert Zweigerdt
Axel Haverich
Andres Hilfiker
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Basic Research in Cardiology / Ausgabe 6/2014
Print ISSN: 0300-8428
Elektronische ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-014-0441-x

Weitere Artikel der Ausgabe 6/2014

Basic Research in Cardiology 6/2014 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.