Skip to main content
Erschienen in: Basic Research in Cardiology 2/2015

Open Access 01.03.2015 | Invited Review

Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9)

verfasst von: Rainer Schulz, Klaus-Dieter Schlüter, Ulrich Laufs

Erschienen in: Basic Research in Cardiology | Ausgabe 2/2015

Abstract

The proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising treatment target to lower serum cholesterol, a major risk factor of cardiovascular diseases. Gain-of-function mutations of PCSK9 are associated with hypercholesterolemia and increased risk of cardiovascular events. Conversely, loss-of-function mutations cause low-plasma LDL-C levels and a reduction of cardiovascular risk without known unwanted effects on individual health. Experimental studies have revealed that PCSK9 reduces the hepatic uptake of LDL-C by increasing the endosomal and lysosomal degradation of LDL receptors (LDLR). A number of clinical studies have demonstrated that inhibition of PCSK9 alone and in addition to statins potently reduces serum LDL-C concentrations. This review summarizes the current data on the regulation of PCSK9, its molecular function in lipid homeostasis and the emerging evidence on the extra-hepatic effects of PCSK9.

Protein convertase–LDL receptor interaction

The main function of the proprotein convertase subtilisin/kexin (PCSK) type 9 (PCSK9) is the proteolytic maturation of secreted proteins such as hormones, cytokines, growth factors, and cell surface receptors [149]. The name PCSK9 stems from the relation to bacterial subtilisin and yeast kexin and the presence of nine secretory serine proteases. PCSK9 is expressed mainly in the liver, the intestine, the kidney, and the central nervous system [122].
PCSK9 is a 692 amino acid protein with a molecular weight of 72 kDa that consists of a prodomain (PD), a catalytic domain and a cysteine- and histidine-rich C-terminal domain (CHRD) [41] (Fig. 1). The best characterized function of PCSK9 relates to the binding to LDL-C receptors (LDLR) in hepatocytes. Pro-PCSK9 (72 kDa) is synthesized in the endoplasmic reticulum (ER) as is the precursor form (120 kDa) of the low-density lipoprotein (LDL) receptor (LDLR). The binding of pro-PCSK9 to the LDLR in the ER supports the transport of the LDLR from the ER [163] towards the Golgi complex, where the LDLR acquires its mature carbohydrate residues (160 kDa). Trafficking of pro-PCSK9 to the Golgi apparatus depends on the presence of the protein Sec24A [31]. Within the Golgi, the pro-domain of pro-PCSK9 is auto-catalytically cleaved off, but remains non-covalently bound to the mature PCSK9 assisting the folding of PCSK9, and blocking its catalytic activity [61]. Binding of pro-PCSK9 to the precursor form of the LDLR promotes PCSK9 auto-catalytic cleavage [163].
Some of the loss-of-function (LOF) mutations of PCSK9—as the exchange of amino acids C678X [15] or S462P [25]—abolish the release of PCSK9 from the ER as does loss of parts of its PD [49]. On its way through the Golgi and trans-Golgi complex, PCSK9 co-localizes with the protein sortilin; in sortilin-knockout mice the plasma PCSK9 concentration is decreased suggesting that such protein–protein interaction is required for cellular secretion of PCSK9 [66]. In healthy humans, circulating PCSK9 levels directly correlate with plasma sortilin levels [66]. The exchange of amino acids S127R and D124G reduces secretion of PCSK9 from hepatocytes and increases the intracellular expression of PCSK9 [72]. It appears that partial proteolysis of PCSK9 is required prior to its cellular secretion [36]. Proteolysis of PCSK9 is regulated by phosphorylation at its residues serine 47 (PD) and serine 688 (CHRD) which occurs by a Golgi casein kinase-like kinase; an increase in epitope phosphorylation reduces proteolysis of PCSK9 [45].
Apart from acting as a chaperone to transport the precursor form of the LDLR from the ER, intracellular PCSK9 plays a role in regulating the expression of the mature LDLR by inducing intracellular degradation of the LDLR prior to its transport to the cell surface membrane. Given the fact that the mature LDLR and PCSK9 are found in the Golgi complex, it is likely that the LDLR degrading effect of PCSK9 occurs in or is initiated in the Golgi or trans-Golgi complex [107, 108]. The post-ER mechanism of LDLR degradation requires the catalytic activity of PCSK9 [13, 14].
If not degraded intracellularly, the mature LDLR is transported to the cell surface, where it resides in clathrin-coated pits because of its interaction with the low-density lipoprotein receptor adapter protein 1, which may cause autosomal recessive hypercholesterolemia (ARH). The LDLR undergoes endocytosis in the presence or absence of its ligand, entering the endocytic recycling compartment. The change in pH within this compartment allows dissociation of the LDLR from its ligand, which then becomes degraded in the lysosome while the LDLR recycles.
The main role of secreted extracellular PCSK9 is to post-translationally regulate the number of cell surface LDLR. Secreted PCSK9 binds to the epidermal growth factor repeat A (EGF-A) region of the LDLR [21, 32, 179]. For such binding, the catalytic activity of PCSK9 is not required [101, 115], but pH changes and changes in the positive [70] or negative [71] charges of PCSK9 epitopes affect its binding affinity to the LDLR [16, 62]. Mutations in the EGF-A binding domain of the LDLR associated with familiar hypercholesterolemia increases PCSK9 binding [114]. The formed PCSK9–LDLR complex is internalized again by clathrin-mediated endocytosis [124, 130] and the complex is then routed to the sorting endosome/lysosome via a mechanism that does not require ubiquitination [172], but might involve interaction of the cytosolic tail of PCSK9 with the amyloid precursor protein like protein 2 [44]. At the acidic pH of the endosome/lysosome, an additional interaction between the ligand-binding domain of the LDLR and the C-terminal domain of PCSK9 occurs [49, 142]; as a consequence PCSK9 remains bound to the LDLR and the LDLR fails to adopt a closed conformation which is required for LDLR recycling. The failure of the LDLR to recycle appears to also involve ectodomain cleavage by a cysteine cathepsin in the sorting endosome [97]. Thus, by binding to the LDLR, PCSK9 disrupts the recycling of the LDLR leading to its degradation and subsequently a reduced number of available LDLRs. LDLR lacking its cytoplasmic domain are also degraded by PCSK9 [162] (Fig. 2).
PCSK9 undergoes self-assembly and forms PCSK9 dimers or trimers which have greater LDLR degrading activity [53]. One of the gain-of-function (GOF) mutations of PCSK9 (D374Y) is characterized by an enhanced PCSK9 self-assembly [53]. The main route of PCSK9 elimination is through LDLR binding [167], although LDLR-independent mechanisms of PCSK9 clearance must exist [24]. Up to 30 % of PCSK9 is bound to LDL-C in mice [55, 167] and normolipidemic subjects [84]. In mice, PCSK9 is also bound to high-density lipoprotein (HDL) [55]. For the binding of PCSK9 to LDL-C the amino residues 31–52 of the PD are required [84].
PCSK9 is cleaved by furin as well as protein convertases (PC) 5/6 [15] between the amino acids Arg 218 and Gln 219 [52], and both forms of PCSK9 can be measured in human plasma [67]. Furin-cleaved PCSK9 (55 kDa) is still active and binds to the LDLR, however, with a twofold reduced activity [104]. Indeed, injection of furin-cleaved PCSK9 into mice results in increased LDL-C, as LDLR are downregulated [104].
PCSK9 binds to a variety of other proteins (for review, see [178]), one of them being annexin A2 which is present in the nucleus, the cytosol and the cell membrane in a variety of cells. The N-terminal repeat R1 of annexin 2 binds to the CHRD region of PCSK9 and inhibits its extracellular LDLR degrading activity [109]. In annexin A2 knockout mice plasma PCSK9 levels are doubled resulting in reduced LDLR expression and an increase in LDL-C [151]; thus annexin A2 is viewed as endogenous inhibitor of PCSK9 [109].
In summary, PCSK9 regulates the concentration of circulating low-density lipoproteins by enhancing the degradation of the hepatic LDLR that is required for hepatic LDL-C clearance.

Plasma concentration of PCSK9

The plasma concentration of PCSK9 follows a diurnal rhythm similar to cholesterol synthesis [28], with an increased plasma concentration in the morning and a lower concentration in the afternoon [125]. The plasma PCSK9 concentration is higher in women compared to men [90], and the PCSK9 concentrations decrease with age in men, but increase in women [11], most likely because elevated estrogen levels reduce PCSK9 expression [126]. Plasma PCSK9 concentration varies over a 50 [34]–100 [90] fold range [30–3,000 ng/ml] and plasma PCSK9 concentration correlates to plasma LDL-C concentration [4, 90] even in newborn infants [6]; in adults a 100 ng/ml increase in the plasma PCSK9 concentration will increase LDL-C by 0.20–0.25 mmol/l [92]. Lipid apheresis reduces plasma PCSK9 levels by 50 % [168], removing both the mature and the furin-cleaved form of PCSK9 [74].

Regulation of PCSK9 gene expression

A number of transcription factors or cofactors regulate the PCSK9 gene expression (Fig. 3), including sterol-response element binding proteins (SREBP-1/2). Since the PCSK9 gene is regulated by sterols through SREBP2, low dietary cholesterol concentrations potently suppresses its expression and PCSK9 protein levels decrease in the course of fasting and increase after feeding in animals [175] and humans [23]. SREBP2 also controls LDLR expression.
SREBP1 expression in hepatocytes is increased by insulin resulting in increased PCSK9 expression [39]. However, insulin can also activate the mammalian target of rapamycin complex 1 (mTORC1)/protein kinase δ pathway thereby inhibiting hepatocyte nuclear factor 1α (HNF1α) resulting in less PCSK9 expression in hepatocytes [2]. Indeed, in HepG2 cells, hyperinsulinemia decreases PCSK9 expression, an effect which is also observed in post-menopausal obese women [9]. On the contrary, in healthy men 24 h hyperinsulinemia did not alter plasma PCSK9 concentrations [80] and PCSK9 expression is similar in normal, pre- and Typ2-diabetic patients [22]. Thus, the overall effect of insulin on PCSK9 expression appears to be neutral.
Peroxisome proliferator-activated receptor (PPAR) regulates PCSK9 expression: PPARα reduces PCSK9 promoter activity thereby attenuating PCSK9 expression, while at the same time PPARα enhances furin/PC5/6 expression leading to increased cleavage of PCSK9 [85]. On the contrary, PPARγ increases PCSK9 expression in hepatocytes [50].
Other transcription factors or factors are the farnesoid X receptor (FXR, activated by bile acids, reduces PCSK9 expression) [93], the liver X receptor (LXR, activated by oxysterols, increases PCSK9 expression) [39, 148], and histone nuclear factor P (HINFP, increases PCSK9 expression) [100].
Also sirtuins 1 and 6 (SIRT1/6), critical histone deacetylases, suppress the PCSK9 gene [166], reduce PCSK9 secretion and increase hepatocyte LDLR expression [117] thereby modifying LDL-C homeostasis. Finally, the adipose tissue-derived adipokine resistin increases the PCSK9 expression and reduces LDLR expression in hepatocytes [116].
Ongoing studies will be instrumental for the understanding of the importance of the regulators of PCSK9 gene expression for serum LDL-C concentrations. In addition, further research is needed to address the expression of PCSK9 and its function in different compartments (e.g. blood, liver and intestine).

PCSK9 and inducible degrader of LDLR (IDOL)

IDOL is another protein which involved in the internalization and degradation of the LDLR [77, 144]. IDOL binds to the C-terminus of the LDLR [147, 148] and stimulates clathrin-independent endocytosis of the LDLR [147]. IDOL, which is activated through the LXR employs the endosomal sorting complex required for transport to traffic LDLR to the lysosomes [147]. IDOL can also stimulate SREBP2 thereby increasing PCSK9 expression again reducing LDLR expression. Individuals carrying an IDOL mutation (pArg266X) which results in a complete loss of IDOL function exhibit low serum LDL-C concentrations [156].

Drug-induced changes in PCSK9 expression

Given the number of transcription factors and co-factors regulating the PCSK9 gene it appears obvious that a number of drugs will affect PCSK9 expression (Table 1).
Table 1
Drugs affecting PCSK9 expression
 
Direct (TF)
Indirect (LDL)
PCSK9 Expression
Transcription factor (TF) involved
Statins
+
+
Increased
SREBP2; HNF1α
Fibrates
+
+
Direct effect: reduced;
PPARα
Indirect effect: increased
SREBP2
Ezetimibe
+
Indirect effect: increased
SREBP2
Insulin
+
Increased
SREBP1
Reduced
HNF1α
Glitazones
+
Reduced
PPARγ
Rapamycine
+
Reduced
HNF1α
Berberine
+
Reduced
HNF1α
Resistin
na
na
Reduced
na
Direct direct effect through modulation of TF, indirect indirect through reduction of LDL-cholesterol and subsequent activation of TF, SREBP sterol-response element binding protein, HNF1α hepatocyte nuclear factor 1α, PPAR peroxisome proliferator-activated receptor, na not assessed
Statins increase the transcription factor SREBP2 [7] thereby increasing PCSK9 expression [7, 18, 138] dose-dependently [64] also in diabetic patients (otherwise having normal PCSK9 levels, see above) [29, 40, 120]. More recently, statins have been shown to increase HNF1α expression in hepatocytes, thereby increasing PCSK9 expression to a greater extent than LDLR expression [48]. Statins not only enhance the monomeric but also the heterodimeric form of PCSK9 [123]. The increase in PCSK9 expression following statin treatment is correlated to the statin-induced LDL-C decrease [10], and can be reversed by mevalonate treatment [51] or resistin treatment [116]. Such co-treatment therefore could enhance the LDL-C reducing effect of statins.
Fibrates activate PPARα thereby affecting PCSK9 expression [85]. Indeed, fibrates reduce PCSK9 expression in hepatocytes [110] and in patients [91]. However, the latter finding is controversial since fibrate treatment increased PCSK9 in another short-term patient study [169]; this discrepant finding can potentially be explained by the LDL-C lowering effect of fibrates leading to an increased PCSK9 expression (for review, see [12]).
Ezetimibe does not increase PCSK9 per se in healthy men [18]. However, ezetimibe through its plasma LDL-C concentration reducing effect might lead to a secondary increase of PCSK9 expression as measured in cynomolgus monkeys [68].
Cholesterylester transfer protein (CETP) inhibitors, in contrast downregulate PCSK9 and LDLR expression through decreases in SREBP2 expression in hepatocytes [47].
Glitazones activate the extracellular-regulated kinases (ERK) 1 and 2 resulting in phosphorylation of PPARγ thereby reducing its activity; as PPARγ increases PCSK9 mRNA and protein expression in the liver, glitazones attenuate secretion of PCSK9 from hepatocytes [50].
Rapamycin, as an immunosuppressant, attenuates mTORC1 activation thereby increasing HNF1α activity and subsequently PCSK9 expression [2].
Berberine treatment decreases PCSK9 in hepatocytes associated with an inhibition of the transcription factor HNF1α [26, 99]. Interestingly, in in vivo studies, berberine treatment reduces dyslipidemia induced by LPS treatment which was associated with a reduction in the plasma PCSK9 concentration [177].

Disease-induced changes of PCSK9 expression

Inflammation stimulates PCSK9 expression in hepatocytes [54] and the plasma PCSK9 concentration is correlated to white blood cell count [102] and fibrinogen concentration [181] in patients. In patients with an acute myocardial infarction, the plasma PCSK9 concentration is elevated compared to stable coronary artery disease patients [5]. Similarly in proteinuric patients [87] and those with a nephrotic syndrome [79] an increase in plasma PCSK9 concentration occurs; part of this effect, however, might relate to the statin treatment of these patients.

PCSK9 mutations and LDL-C concentration

Alterations in the PCSK9 gene and/or PCSK9 GOF mutations are responsible in part for familiar hypercholesterolemia (FH) [106], including the autosomal dominant form. GOF mutations of PCSK9 [1, 15, 72] lead to hypercholesterolemia while non-sense mutations [1] or LOF-mutations [15, 17, 34, 45] reduce the LDL-C concentration (Fig. 1). GOF mutations are sometimes related to reduced furin cleavage of PCSK9 [52] while LOF-mutations relate to lack of PCSK9 phosphorylation and subsequent increased proteolysis [45]. For review, please refer to [170].

PCSK9 and cardiovascular disease

The GOF-mutation (D374Y) of PCSK9 causes severe hypercholesterolemia and development of profound atherosclerotic lesions in mice [137] and pigs [3]. PCSK9 overexpression increases LDL-C concentration in mice and accelerates the development of atherosclerosis, the latter being absent in LDLR-knockout mice [41]. On the contrary, development of atherosclerosis is slowed down by inactivation of the PCSK9 gene in mice [41]. These data were supported by Kühnast et al. [86] treating mice with increased atherogenesis with different doses of a PCSK9 inhibitor alone and in combination with atorvastatin. Alirocumab alone dose-dependently decreased serum cholesterol, reduced atherosclerotic lesion size and improved plaque morphology. These effects were enhanced when atorvastatin was added [86] (Fig. 4) but beneficial effects require both the presence of the LDLR and apoprotein E [8].
Development of atherosclerosis involves endothelial cell apoptosis and accumulation of foam cells, both of which can be triggered by oxidized LDL-C (oxLDL-C) [154, 165, 174]. Indeed, oxLDL-C increases PCSK9 expression in macrophages [165] and the oxLDL-C induced apoptosis is reduced in human umbilical vein endothelial cells by silencing PCSK9, an effect being related to less caspase 9 and 3 activation [174]. Also cholesterol uptake of THP-1 macrophages and foam cell formation as well as oxLDL-C/NFkB- induced inflammation are attenuated by PCSK9 silencing [165] (for review, see [154]).
In line with the above cell and animal experiments, the plasma PCSK9 concentration correlates with the intima-media thickness in patients [96], and GOF mutations of PCSK9 increase not only the LDL-C concentration but also the intima-media thickness over time compared to normal subjects [121]. Plasma PCSK9 concentrations are predictive for 4-5 year major cardiovascular event rate [76] and PCSK9 serum concentrations correlate with cardiovascular risk [95]. In patients with stable coronary artery disease (Fig. 5), higher PCSK9 concentrations were associated with increased cardiovascular events and with female gender, hypertension, statin treatment, C-reactive protein, HbA1c, insulin, total cholesterol and fasting triglycerides, but not with LDL- or HDL-cholesterol. Interestingly, the association of PCSK9 levels with cardiovascular events was reduced after adjustment for fasting triglycerides [173].
With high-dose statin treatment, however, the predictive value of PCSK9 is lost [76]. Mutations of PCSK9 leading to reduced expression and or function of PCSK9 are associated with a reduced rate of coronary heart disease [37] (Fig. 6), myocardial infarction [63] and overall cardiovascular events [143], an effect being more pronounced in black as compared to white subjects [37].

Other receptors/channels/enzymes affected by PCSK9

Apart from its binding to LDLR, PCSK9 also interacts with other receptors such as the very low-density lipoprotein receptor (VLDLR) [88, 127], the LDLR-related protein 1 (LRP1) [27], the apoprotein E receptor (ApoER) as well as CD81 on hepatocytes (hepatitis C virus receptor) [89] and CD36 on macrophages (for review, see [154]). Some interactions of PCSK9 with receptors depend on a EGF-A binding domain (VLDLR) [152] or require the catalytic activity of PCSK9 (LRP1). VLDLR and ApoER are also targeted by IDOL (for review, see [76]).

Lipoprotein (Lp) (a)

Clinical studies show that inhibition of PCSK9 potently lowers Lp(a), which is a strong cardiovascular risk factor [59, 159]. Currently, no drug treatment is available that lowers Lp(a) (with the exeption of nicotinic acid in some countries). Interestingly, PCSK9 inhibition reduces Lp(a) in patients with homozygous FH despite their lack or dysfunction of the LDLR. This effect was observed even in patients that are LDLR negative [159]. Therefore, the question arises whether the regulation of Lp(a) by PCSK9 may be independent of the LDLR. From this perspective, the modulation of VLDLR by PCSK9 appears to be of great interest since Lp(a) clearance by hepatocytes appears to depend on VLDLR expression [73]. Thus, reducing PCSK9 expression or receptor binding activity may mediate the reduction of Lp(a). The underlying molecular mechanism(s) are not fully understood. The following pathways may contribute:
  • Reduction of Apo(a) synthesis (in hepatocytes, release in circulation).
  • Reduction of ApoB or assembly (at outer hepatocyte surface).
  • Enhanced removal of Lp(a) in kidney, liver, peripheral tissues.  Potential additional receptors for Lp(a) such as docking receptors, sorting receptors sortilin, endocytic receptors (syndecan-1 heparan sulfate proteoglycan).
  • Intestinal lipoprotein metabolism (please see below).

Epithelial ENaC

Expression at the cell surface is reduced by PCSK9. PCSK9—independent from its catalytic activity— the proteosomal degradation of ENaC prior to its membrane integration; interestingly and different from other receptor interactions, PCSK9 does not interfere with membrane-bound ENaC [153]. It has been speculated that GOF mutation of PCSK9 will therefore reduce membrane-bound ENaC expression leading to less sodium reabsorption and potentially less hypertension in the long-term. However, the clinical study programs of PCSK9 inhibiting antibodies have not shown signals of increased blood pressure to date.

Extra-hepatic expression and effects of PCSK9

Intestinal cholesterol absorption

Although the hepatic effects of PCSK9 appear to be the primary mechanism of action, PCSK9 in intestinal cells may play a very important role for the lipoprotein homeostasis. PCSK9 increases the expression of the apical cholesterol transporter (Niemann Pick C1 like 1, NPC1L1) in intestine epithelial cells [98]. Furthermore, PCSK9 enhances the intracellular expression of the apoprotein B48 (apoB48) [98, 135] and modifies the activities of the HMG-CoA reductase (decreased), the Acyl-CoA-Cholesterol-Transferase (ACAT, decreased) [98] and the microsomal transfer protein (MTP, increased) [98]. It also reduces the expression of the LDLR at the basolateral membrane of intestine epithelial cells [98]. PCSK9 promotes intestinal overproduction of triglyceride-rich apoB lipoproteins [135], and a reduction in PCSK9 leads to a reduced apoB48 expression, less triglycerides being transferred to apoB48 (via MTP inhibition) and prolonged storage and less secretion of triglycerides (via ACAT inhibition) from intestine epithelial cells. As a consequence postprandial triglyceridemia is reduced in PCSK9 knockout mice [95].
Furthermore, the transintestinal cholesterol excretion (TICE)—contributes up to 30 % of fecal neutral sterols excretion—is modulated by PCSK9. TICE is fuelled by apoprotein B containing particles such as LDL and also to a minor extent by HDL. TICE involves the active transporter ATP binding cassette transporter B1 on the apical membrane of enterocytes and the LDLR at its basolateral membrane [94]. PCSK9 through decreasing LDLR expression reduces TICE, as it had no impact in LDLR-knockout mice [94]. These findings may explain the correlation of PCSK9 with triglycerides in the serum [173].

PCSK9 in the brain

PCSK9 was initially discovered as a protein up-regulated during apoptosis of neurons [150]. PCSK9, that was formerly known as NARC-1 is important for brain development, especially the cerebellum [128]. Here, PCSK9 is thought to interact primarily with VLDLR and ApoER which are coupled to relin signaling and pro-apoptotic signaling pathways [88], although an interaction of PCSK9 with ApoER in brain tissue was questioned more recently [105]. PCSK9 is present in the cerebrospinal fluid at remarkably constant concentrations [33]. Brain tissue PCSK9 expression is increased with cerebral ischemia [88] and in brain tissue with signs of neuronal apoptosis [19], the latter being induced for example by increased oxLDL-C concentrations [176]. A relation to vascular dementia and Alzheimer’s disease is controversial, PCSK9 may be involved in degradation of β-site amyloid precursor protein (APP)-cleaving enzyme 1 and the generation of amyloid β-peptide.
The location of the “loss-of-function” single-nucleotide polymorphism rs11591147 (more commonly called R46L) is depicted in Fig. 1. In the Atherosclerosis Risk in Communities study (ARIC), the R46L mutation was associated with lower LDL-C and a reduced prevalence of peripheral arterial disease as well as a reduced risk of coronary heart disease [17, 37, 57]. Recently, the effects of LDL-C lowering mediated by PCSK9 inhibition on cognitive function have become a matter of debate [http://​digitool.​library.​mcgill.​ca/​webclient/​StreamGate?​folder_​id=​0&​dvs=​1420384772483~46​3]. Jukema et al. therefore assessed the PCSK9 R46Lmutation within 5,777 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) [129]. R46L was associated with 10–16 % lower LDL-C levels, but was not associated with cognitive performance, daily activities, or non-cardiovascular clinical events. The authors conclude “that lower cholesterol levels due to genetic variation in the PCSK9 gene are not associated with cognitive performance, functional status, or non-cardiovascular clinical events” [129].

PCSK9 in pancreatic ß-cells

PCSK9 and LDLR are also expressed in ß-cells. PCSK9-knockout mice carry more LDLR and less insulin in the pancreas, leading to hyperglycemia and glucose intolerance. ß-cell islets of PCSK9-knockout mice inhibit signs of inflammation and apoptosis [112]. This phenotype is modulated by gender and age [111]. Glucose tolerance is one of the parameters that will be carefully monitored in the outcome trials with PCSK9 inhibitors, so far the phase II data do not suggest the presence of this potential off-target effect in humans.

PCSK9 in adipose tissue

PCSK9-knockout mice have more visceral adipose tissue. Individual adipocytes are hypertrophied, most likely as a result of increased expression of VLDLR [141].

PCSK9 and innate immune response

Pathogen-associated lipids such as lipopolysaccharide (LPS) activate innate immune receptors inducing an inflammatory response, e.g. during sepsis. Mammalian lipid transfer proteins bind pathogen lipids. Interstingly, PCSK9 inhibited LPS uptake in human liver cells [171]. Inhibition of PCSK9 improved survival and inflammation in murine sepsis. The PCSK9 effect was abrogated in LDL receptor (LDLR) knockout mice. These data were confirmed in humans with PCSK9 loss-of-function genetic variants and in humans who are homozygous for an LDLR variant that is resistant to PCSK9. These data suggest that inhibition of PCSK9 mediates pathogen lipid clearance via the LDLR regulating systemic inflammatory response.

Therapeutic strategies to inhibit PCSK9

Anti-PCSK9 antibody treatment

Fully human antibodies directed against PCSK9 have been developed and are used in clinical trials (for detailed review, see [78]). These antibodies dose-dependently reduce plasma LDL-C and also lower the plasma Lp(a) concentration. Results of published trials are given in Table 2. However, new strategies to modify the PCSK9-LDLR interaction are in development (Table 3).
Table 2
Clinical results of PCSK9 antibody treatment
Study name
Substance
Patients’ characteristics
Patient number
Analysis done at
Co-treatment
LDL reduction
Other lipid parameters
Reference
First author
Odyssey alternative
Alirocumab (Ali)
Statin intolerant
Ali: 126 Ezetimibe
24 weeks
Ali
Ali: 52 %
Ali: Lp(a)-27 %
AHA2014a
Eze
Eze: 17 %
Ali: ApoB-43 %
(Eze): 125
Eze:Lp(a)-10 %
Eze:ApoB-14 %
Odyssey Combo 2
Alirocumab
High CV risk
Ali: 479
52 weeks
Atorvastatin (Ator)
Ali + Ator: 50 %
Not presented
ESC2014b [38]
Ali + Eze: 18 %
Eze: 241
Odyssey FHI + FHII
Alirocumab
HeFH
735
52 weeks
Statins and/or Eze
FH I: 49 %
Not presented
ESC2014b
FH II: 51 %
Odyssey long-term
Alirocumab
HeFH or high CV risk
2,421
52 weeks
Ator and/or Eze
Ali: 56 %
Ali: Lp(a)-26 %
ESC2014c
Ali: ApoB-54 %
McKenney
Alirocumab
LDL-C > 100
183
12 weeks
Statins
Ali: 40–70 %, dose- and administration- dependent
Not presented
[113]
Roth
Alirocumab
LDL-C >100, <190 and moderate CV risk
103
24 weeks
Eze
Eze: 17 %
Not presented
[140]
Ali: 54 %
Roth
Alirocumab
LDL-C <100 on atorvastatin (10 mg)
92
8 weeks
Ator 80 mg vs. Ali + Ator 10 mg
Ato: 17 %
Not presented
[139]
Ali: 72 %
Stein
Alirocumab
HeFH
77
12 weeks
Statins or Eze
Ali: 29–68 %; dose-administration dependent
Not presented
[157]
Stein
Alirocumab
HeFH; LDL-C <100
51
12 weeks
Statins
Ali: 39–61 %; dose-administration dependent
Not presented
[160]
Meta analysis
Alirocumab
Some of the above study patients with hypercholesterolemia
186
12 weeks
Standard of care
Not presented
Lp(a): −30 %
[59]
Mendel-1
Evolocumab (Evo)
LDL-C <190
406
12 weeks
Eze
Evo: 37–52 %
Not presented
[83]
Eze: 27–34 %
Mendel-2
Evolocumab
LDL-C <190; Framingham score <10 %
614
12 weeks
Eze
Evo: 55–57 %
Not presented
[82]
Eze: 38–10 %
GAUSS-1
Evolocumab
Statin intolerant
157
12 weeks
Eze
Evo: 26–47 %
Not presented
[164]
GAUSS-2
Evolocumab
Hypercholesterolemia Statin-intolerant
307
12 weeks
Evo
Evo: 53–56 %
Not presented
[35, 161]
Eze
Eze: 37–39 %
Laplace-TIMI
Evolocumab
LDL-C >85 mg on statins and/or Eze
631
12 weeks
Statins
Evo: 42–62 %; dose-and administration- dependent
Evo: Lp(a)—18–23 %
[43, 60]
Laplace-TIMI
Evolocumab
High CV risk
282
12 weeks
Statins
 
Not presented
[42]
LAPLACE 2
Evolocumab
Statins low dose LDL >115
2,067
12 weeks
Statins
Evo: 63–75 %; dose-administration dependent
Not presented
[136]
high-dose LDL >90
Rutherford
Evolocumab
HeFH
167
12 weeks
Statins and/or ezetimibe
Evo: 43–55 %
Not presented
[131]
Rutherford 2
Evolocumab
HeFH
331
12 weeks
Statins
Evo: 59–61 %; dose-administration dependent
Not presented
[134]
Osler
Evolocumab
Mendel; Laplace; Gauss and Rutherford patients
1,104
52 weeks
Standard of care
Evo: on average 50 %
Not presented
[81]
YUKAWA
Evolocumab
High CV risk
310
12 weeks
Statins and/or ezetimibe
Evo: 52–68 %
Not presented
[69]
Dias
Evolocumab
META-analysis
113
12–16 weeks
Statins
Evo: 64–81 %; dose-administration dependent
Not presented
[46]
Blom
Evolocumab
Hypercholesterolemia
901
52 weeks
Diet (D), Eze, Ator
Evo + D: 56 %
Reduced ApoB, nonHDL-C, Lp(a), triglycerides
[20]
Evo + Ator10 mg: 61.6 %;
Evo + Ator 80 mg: 56.8 %
Evo + Ator + Eze: 48.5 %
Stein
Evolocumab
Homozygous FH
6
12 weeks
Standard of care
Evo: 19–26 %
Not presented
[159]
Tesla
Evolocumab
Homozygous FH
49
12 weeks
Standard of care
Evo: 31 %
Not presented
[133]
Metaanalysis
Evolocumab
Some of the above study patients with hypercholesterolemia
1,359
12 weeks
Standard of care
Evo: 40–59 %
Evo: Lp(a) 25–30 %
[132, 158]
Table 3
PCSK9 inhibitors in development
Type
Compound
Company
Phase
Comments
mAb
Evolocumab AMG145
Amgen
3 PROFICIO
 
Alirocumab REGN7272/SAR236553
Sanofi/regeneron
3 ODYSSEY
 
Bococizumab RN-316;PF-04950615
Pfizer/rinat
3 SPIRE
 
RG7652
Roche/genentech
2
On hold
LY3015014
Eli Lilly
2
 
LGT209
Novartis
2
 
Adnectin
Ad. BMS-962476
BMS-Adnexus
2
 
siRNA
ALN-PCS
Alnylam Pharmaceuticals
1 (IV); preclinical (SC)
Cationic lipidoid formula
Small molecule
Shifa Biomedical Corp
Preclinical
Preparation for Phase 1
Mimetic peptide
EGF-A peptide
Merck & Co.
Preclinical
 
Prodomain and C-terminal domain interaction disruption
School of Medicine, University of South Carolina, USA
Preclinical
 

Partial antibodies/fragment antigen binding

Antibodies to PCSK9, binding to epitopes adjacent to the ones required for LDLR binding, increase LDLR expression in hepatocytes. This antibody administered to mice results in a significant reduction in plasma LDL-C concentration which is not seen in LDLR-knockout mice. The effect of antibody treatment on LDL-C is even more pronounced and prolonged in monkeys [30]. Similar results are obtained with antibodies covering the catalytic domain of PCSK9 otherwise binding the EGF-A domain of the LDLR [119, 180]; such treatment reduces the free plasma PCSK9 and LDL-C concentrations in rhesus monkeys [146]. Similarly, antibodies against the C-terminal domain lower LDL-C in cynomolgus monkeys [145].
Similar to antibodies, molecular scaffolds binding to PCSK9 close to its LDLR binding epitopes reduce the free PCSK9 and subsequently the LDL-C concentration in cynomolgus monkeys [118]. Such a molecular scaffold is adnectin (11 kDa), which is derived from human fibronectin.
Apart from the interaction with secreted PCSK9, interference can occur at the gene or mRNA level. Induction of loss-of-function mutations in mice, using clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) genome editing, results in reduced plasma PCSK9 and LDL-C concentrations [155]. RNA interfering (RNAi) drugs attenuate PCSK9 synthesis and decrease plasma PCSK9 and LDL-C concentrations in rodents [58], primates [58] and healthy volunteers [56]. Locked nucleic acid (LNA) antisense oligonucleotide silences PCSK9 in vitro (hepatocytes) and in vivo (mice) subsequently reducing plasma PCSK9 and LDL-C concentrations [65]. Again, similar results are obtained in non-human primates where a single injection of LNA decreases LDL-C concentration for more than 4 weeks [103].
PCSK9 has both intracellular and extracellular functions which differ related to the cell type and organ. PCSK9 affects both receptor expression and intracellular enzyme function. Thus, antibodies directed against the secreted form of PCSK9—acting mainly extracellularly—will most likely lead to different results when compared to approaches resulting to LOF-mutation or gene knockout of PCSK9, both interfering PCSK9 intracellular and extracellular function. Epidemiological findings related to GOF- or LOF- mutations of PCSK9 may therefore not easily be transferred to recent antibody approaches.
In conclusion, effects of PCSK9 inhibitors in addition to the regulation of the LDLR expression clearly exist and may be beneficial. In the large on-going phase 3 programs using PCSK9 inhibitors, to date no “loss of safety”- signal has been observed. The primary effect of PSCK9 inhibition appears to be the up-regulation of hepatic LDLR but further basic science and clinical research will advance our understanding of how PCSK9 inhibition interferes with lipoprotein metabolism and improve cardiovascular outcome.

Conflict of interest

Rainer Schulz: honoraria for lectures by AstraZeneca, OmniaMed, Recordati and Sanofi. Klaus-Dieter Schlüter has no COI to declare. Ulrich Laufs: honoraria/reimbursements for lectures, participation in studies, scientific cooperation with Saarland University, consulting, travel, travel support of colleagues or support of scientific meetings via the Universität des Saarlandes within the last 5 years: ABDA, Amgen, AstraZeneca, Bayer, Berlin-Chemie, Boehringer-Ingelheim, Daiichi-Sankyo, DACH, DFG, EU, i-cor, Lilly, Medtronik, MSD, Pfizer, Roche, Sanofi, Servier, Stifterverbad, Synlab.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

Literatur
1.
Zurück zum Zitat Abifadel M, Rabes JP, Boileau C, Varret M (2007) After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9. Ann Endocrinol (Paris) 68:138–146. doi:10.1016/j.ando.2007.02.002 Abifadel M, Rabes JP, Boileau C, Varret M (2007) After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9. Ann Endocrinol (Paris) 68:138–146. doi:10.​1016/​j.​ando.​2007.​02.​002
2.
Zurück zum Zitat Ai D, Chen C, Han S, Ganda A, Murphy AJ, Haeusler R, Thorp E, Accili D, Horton JD, Tall AR (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122:1262–1270. doi:10.1172/JCI61919 PubMedCentralPubMed Ai D, Chen C, Han S, Ganda A, Murphy AJ, Haeusler R, Thorp E, Accili D, Horton JD, Tall AR (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122:1262–1270. doi:10.​1172/​JCI61919 PubMedCentralPubMed
3.
Zurück zum Zitat Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra1. doi:10.1126/scitranslmed.3004853 PubMed Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra1. doi:10.​1126/​scitranslmed.​3004853 PubMed
4.
Zurück zum Zitat Alborn WE, Cao G, Careskey HE, Qian YW, Subramaniam DR, Davies J, Conner EM, Konrad RJ (2007) Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem 53:1814–1819. doi:10.1373/clinchem.2007.091280 PubMed Alborn WE, Cao G, Careskey HE, Qian YW, Subramaniam DR, Davies J, Conner EM, Konrad RJ (2007) Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem 53:1814–1819. doi:10.​1373/​clinchem.​2007.​091280 PubMed
5.
Zurück zum Zitat Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, Dandona S, Roberts R, Quyyumi AA, Chen HH, Stewart AF (2014) Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One 9:e106294. doi:10.1371/journal.pone.0106294 PubMedCentralPubMed Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, Dandona S, Roberts R, Quyyumi AA, Chen HH, Stewart AF (2014) Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One 9:e106294. doi:10.​1371/​journal.​pone.​0106294 PubMedCentralPubMed
7.
Zurück zum Zitat Ason B, Tep S, Davis HR Jr, Xu Y, Tetzloff G, Galinski B, Soriano F, Dubinina N, Zhu L, Stefanni A, Wong KK, Tadin-Strapps M, Bartz SR, Hubbard B, Ranalletta M, Sachs AB, Flanagan WM, Strack A, Kuklin NA (2011) Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J Lipid Res 52:679–687. doi:10.1194/jlr.M013664 PubMedCentralPubMed Ason B, Tep S, Davis HR Jr, Xu Y, Tetzloff G, Galinski B, Soriano F, Dubinina N, Zhu L, Stefanni A, Wong KK, Tadin-Strapps M, Bartz SR, Hubbard B, Ranalletta M, Sachs AB, Flanagan WM, Strack A, Kuklin NA (2011) Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J Lipid Res 52:679–687. doi:10.​1194/​jlr.​M013664 PubMedCentralPubMed
8.
Zurück zum Zitat Ason B, van der Hoorn JW, Chan J, Lee E, Pieterman EJ, Nguyen KK, Di M, Shetterly S, Tang J, Yeh WC, Schwarz M, Jukema JW, Scott R, Wasserman SM, Princen HM, Jackson S (2014) PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE. J Lipid Res 55:2370–2379. doi:10.1194/jlr.M053207 PubMed Ason B, van der Hoorn JW, Chan J, Lee E, Pieterman EJ, Nguyen KK, Di M, Shetterly S, Tang J, Yeh WC, Schwarz M, Jukema JW, Scott R, Wasserman SM, Princen HM, Jackson S (2014) PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE. J Lipid Res 55:2370–2379. doi:10.​1194/​jlr.​M053207 PubMed
10.
Zurück zum Zitat Awan Z, Seidah NG, MacFadyen JG, Benjannet S, Chasman DI, Ridker PM, Genest J (2012) Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem 58:183–189. doi:10.1373/clinchem.2011.172932 PubMed Awan Z, Seidah NG, MacFadyen JG, Benjannet S, Chasman DI, Ridker PM, Genest J (2012) Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem 58:183–189. doi:10.​1373/​clinchem.​2011.​172932 PubMed
11.
Zurück zum Zitat Baass A, Dubuc G, Tremblay M, Delvin EE, O’Loughlin J, Levy E, Davignon J, Lambert M (2009) Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem 55:1637–1645. doi:10.1373/clinchem.2009.126987 PubMed Baass A, Dubuc G, Tremblay M, Delvin EE, O’Loughlin J, Levy E, Davignon J, Lambert M (2009) Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem 55:1637–1645. doi:10.​1373/​clinchem.​2009.​126987 PubMed
12.
Zurück zum Zitat Beaudoin M, Lo KS, N’Diaye A, Rivas MA, Dube MP, Laplante N, Phillips MS, Rioux JD, Tardif JC, Lettre G (2012) Pooled DNA resequencing of 68 myocardial infarction candidate genes in French canadians. Circ Cardiovasc Genet 5:547–554. doi:10.1161/CIRCGENETICS.112.963165 PubMed Beaudoin M, Lo KS, N’Diaye A, Rivas MA, Dube MP, Laplante N, Phillips MS, Rioux JD, Tardif JC, Lettre G (2012) Pooled DNA resequencing of 68 myocardial infarction candidate genes in French canadians. Circ Cardiovasc Genet 5:547–554. doi:10.​1161/​CIRCGENETICS.​112.​963165 PubMed
13.
Zurück zum Zitat Benjannet S, Hamelin J, Chretien M, Seidah NG (2012) Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem 287:33745–33755. doi:10.1074/jbc.M112.399725 PubMedCentralPubMed Benjannet S, Hamelin J, Chretien M, Seidah NG (2012) Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem 287:33745–33755. doi:10.​1074/​jbc.​M112.​399725 PubMedCentralPubMed
14.
Zurück zum Zitat Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chretien M, Prat A, Seidah NG (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279:48865–48875. doi:10.1074/jbc.M409699200 PubMed Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chretien M, Prat A, Seidah NG (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279:48865–48875. doi:10.​1074/​jbc.​M409699200 PubMed
15.
Zurück zum Zitat Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG (2006) The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem 281:30561–30572. doi:10.1074/jbc.M606495200 PubMed Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG (2006) The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem 281:30561–30572. doi:10.​1074/​jbc.​M606495200 PubMed
16.
Zurück zum Zitat Benjannet S, Saavedra YG, Hamelin J, Asselin MC, Essalmani R, Pasquato A, Lemaire P, Duke G, Miao B, Duclos F, Parker R, Mayer G, Seidah NG (2010) Effects of the prosegment and pH on the activity of PCSK9: evidence for additional processing events. J Biol Chem 285:40965–40978. doi:10.1074/jbc.M110.154815 PubMedCentralPubMed Benjannet S, Saavedra YG, Hamelin J, Asselin MC, Essalmani R, Pasquato A, Lemaire P, Duke G, Miao B, Duclos F, Parker R, Mayer G, Seidah NG (2010) Effects of the prosegment and pH on the activity of PCSK9: evidence for additional processing events. J Biol Chem 285:40965–40978. doi:10.​1074/​jbc.​M110.​154815 PubMedCentralPubMed
17.
Zurück zum Zitat Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A (2010) PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 55:2833–2842. doi:10.1016/j.jacc.2010.02.044 PubMed Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A (2010) PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 55:2833–2842. doi:10.​1016/​j.​jacc.​2010.​02.​044 PubMed
19.
Zurück zum Zitat Bingham B, Shen R, Kotnis S, Lo CF, Ozenberger BA, Ghosh N, Kennedy JD, Jacobsen JS, Grenier JM, DiStefano PS, Chiang LW, Wood A (2006) Proapoptotic effects of NARC 1 (=PCSK9), the gene encoding a novel serine proteinase. Cytometry A 69:1123–1131. doi:10.1002/cyto.a.20346 PubMed Bingham B, Shen R, Kotnis S, Lo CF, Ozenberger BA, Ghosh N, Kennedy JD, Jacobsen JS, Grenier JM, DiStefano PS, Chiang LW, Wood A (2006) Proapoptotic effects of NARC 1 (=PCSK9), the gene encoding a novel serine proteinase. Cytometry A 69:1123–1131. doi:10.​1002/​cyto.​a.​20346 PubMed
20.
Zurück zum Zitat Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Monsalvo ML, Tsirtsonis K, Kim JB, Scott R, Wasserman SM, Stein EA (2014) A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 370:1809–1819. doi:10.1056/NEJMoa1316222 PubMed Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Monsalvo ML, Tsirtsonis K, Kim JB, Scott R, Wasserman SM, Stein EA (2014) A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 370:1809–1819. doi:10.​1056/​NEJMoa1316222 PubMed
21.
Zurück zum Zitat Bottomley MJ, Cirillo A, Orsatti L, Ruggeri L, Fisher TS, Santoro JC, Cummings RT, Cubbon RM, Lo SP, Calzetta A, Noto A, Baysarowich J, Mattu M, Talamo F, De FR, Sparrow CP, Sitlani A, Carfi A (2009) Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J Biol Chem 284:1313–1323. doi:10.1074/jbc.M808363200 PubMed Bottomley MJ, Cirillo A, Orsatti L, Ruggeri L, Fisher TS, Santoro JC, Cummings RT, Cubbon RM, Lo SP, Calzetta A, Noto A, Baysarowich J, Mattu M, Talamo F, De FR, Sparrow CP, Sitlani A, Carfi A (2009) Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J Biol Chem 284:1313–1323. doi:10.​1074/​jbc.​M808363200 PubMed
22.
Zurück zum Zitat Brouwers MC, Troutt JS, van Greevenbroek MM, Ferreira I, Feskens EJ, van der Kallen CJ, Schaper NC, Schalkwijk CG, Konrad RJ, Stehouwer CD (2011) Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: the CODAM study. Atherosclerosis 217:263–267. doi:10.1016/j.atherosclerosis.2011.03.023 PubMed Brouwers MC, Troutt JS, van Greevenbroek MM, Ferreira I, Feskens EJ, van der Kallen CJ, Schaper NC, Schalkwijk CG, Konrad RJ, Stehouwer CD (2011) Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: the CODAM study. Atherosclerosis 217:263–267. doi:10.​1016/​j.​atherosclerosis.​2011.​03.​023 PubMed
24.
Zurück zum Zitat Cameron J, Bogsrud MP, Tveten K, Strom TB, Holven K, Berge KE, Leren TP (2012) Serum levels of proprotein convertase subtilisin/kexin type 9 in subjects with familial hypercholesterolemia indicate that proprotein convertase subtilisin/kexin type 9 is cleared from plasma by low-density lipoprotein receptor-independent pathways. Transl Res 160:125–130. doi:10.1016/j.trsl.2012.01.010 PubMed Cameron J, Bogsrud MP, Tveten K, Strom TB, Holven K, Berge KE, Leren TP (2012) Serum levels of proprotein convertase subtilisin/kexin type 9 in subjects with familial hypercholesterolemia indicate that proprotein convertase subtilisin/kexin type 9 is cleared from plasma by low-density lipoprotein receptor-independent pathways. Transl Res 160:125–130. doi:10.​1016/​j.​trsl.​2012.​01.​010 PubMed
27.
28.
Zurück zum Zitat Cariou B, Langhi C, Le BM, Bortolotti M, Le KA, Theytaz F, Le MC, Guyomarc’h-Delasalle B, Zair Y, Kreis R, Boesch C, Krempf M, Tappy L, Costet P (2013) Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond) 10:4. doi:10.1186/1743-7075-10-4 Cariou B, Langhi C, Le BM, Bortolotti M, Le KA, Theytaz F, Le MC, Guyomarc’h-Delasalle B, Zair Y, Kreis R, Boesch C, Krempf M, Tappy L, Costet P (2013) Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond) 10:4. doi:10.​1186/​1743-7075-10-4
30.
Zurück zum Zitat Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, Di Y, Shetterly S, Arimura Z, Salomonis H, Romanow WG, Thibault ST, Zhang R, Cao P, Yang XP, Yu T, Lu M, Retter MW, Kwon G, Henne K, Pan O, Tsai MM, Fuchslocher B, Yang E, Zhou L, Lee KJ, Daris M, Sheng J, Wang Y, Shen WD, Yeh WC, Emery M, Walker NP, Shan B, Schwarz M, Jackson SM (2009) A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA 106:9820–9825. doi:10.1073/pnas.0903849106 PubMedCentralPubMed Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, Di Y, Shetterly S, Arimura Z, Salomonis H, Romanow WG, Thibault ST, Zhang R, Cao P, Yang XP, Yu T, Lu M, Retter MW, Kwon G, Henne K, Pan O, Tsai MM, Fuchslocher B, Yang E, Zhou L, Lee KJ, Daris M, Sheng J, Wang Y, Shen WD, Yeh WC, Emery M, Walker NP, Shan B, Schwarz M, Jackson SM (2009) A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA 106:9820–9825. doi:10.​1073/​pnas.​0903849106 PubMedCentralPubMed
31.
Zurück zum Zitat Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, Bai Y, Liu HH, Adams E, Baines A, Yu G, Sartor MA, Zhang B, Yi Z, Lin J, Young SG, Schekman R, Ginsburg D (2013) SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife 2:e00444. doi:10.7554/eLife.00444;00444 PubMedCentralPubMed Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, Bai Y, Liu HH, Adams E, Baines A, Yu G, Sartor MA, Zhang B, Yi Z, Lin J, Young SG, Schekman R, Ginsburg D (2013) SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife 2:e00444. doi:10.​7554/​eLife.​00444;00444 PubMedCentralPubMed
32.
33.
Zurück zum Zitat Chen YQ, Troutt JS, Konrad RJ (2014) PCSK9 is present in human cerebrospinal fluid and is maintained at remarkably constant concentrations throughout the course of the day. Lipids 49:445–455. doi:10.1007/s11745-014-3895-6 PubMed Chen YQ, Troutt JS, Konrad RJ (2014) PCSK9 is present in human cerebrospinal fluid and is maintained at remarkably constant concentrations throughout the course of the day. Lipids 49:445–455. doi:10.​1007/​s11745-014-3895-6 PubMed
34.
Zurück zum Zitat Chernogubova E, Strawbridge R, Mahdessian H, Malarstig A, Krapivner S, Gigante B, Hellenius ML, de FU, Franco-Cereceda A, Syvanen AC, Troutt JS, Konrad RJ, Eriksson P, Hamsten A, van ‘t Hooft FM (2012) Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 32:1526–1534. doi:10.1161/ATVBAHA.111.240549 PubMed Chernogubova E, Strawbridge R, Mahdessian H, Malarstig A, Krapivner S, Gigante B, Hellenius ML, de FU, Franco-Cereceda A, Syvanen AC, Troutt JS, Konrad RJ, Eriksson P, Hamsten A, van ‘t Hooft FM (2012) Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 32:1526–1534. doi:10.​1161/​ATVBAHA.​111.​240549 PubMed
35.
Zurück zum Zitat Cho L, Rocco M, Colquhoun D, Sullivan D, Rosenson RS, Dent R, Xue A, Scott R, Wasserman SM, Stroes E (2014) Design and rationale of the GAUSS-2 study trial: a double-blind, ezetimibe-controlled phase 3 study of the efficacy and tolerability of evolocumab (AMG 145) in subjects with hypercholesterolemia who are intolerant of statin therapy. Clin Cardiol 37:131–139. doi:10.1002/clc.22248 PubMed Cho L, Rocco M, Colquhoun D, Sullivan D, Rosenson RS, Dent R, Xue A, Scott R, Wasserman SM, Stroes E (2014) Design and rationale of the GAUSS-2 study trial: a double-blind, ezetimibe-controlled phase 3 study of the efficacy and tolerability of evolocumab (AMG 145) in subjects with hypercholesterolemia who are intolerant of statin therapy. Clin Cardiol 37:131–139. doi:10.​1002/​clc.​22248 PubMed
36.
Zurück zum Zitat Chorba JS, Shokat KM (2014) The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J Biol Chem 289:29030–29043. doi:10.1074/jbc.M114.594861 PubMed Chorba JS, Shokat KM (2014) The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J Biol Chem 289:29030–29043. doi:10.​1074/​jbc.​M114.​594861 PubMed
37.
Zurück zum Zitat Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272. doi:10.1056/NEJMoa054013 PubMed Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272. doi:10.​1056/​NEJMoa054013 PubMed
38.
Zurück zum Zitat Colhoun HM, Robinson JG, Farnier M, Cariou B, Blom D, Kereiakes DJ, Lorenzato C, Pordy R, Chaudhari U (2014) Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: rationale and design of the ODYSSEY COMBO I and II trials. BMC Cardiovasc Disord 14:121. doi:10.1186/1471-2261-14-121 PubMedCentralPubMed Colhoun HM, Robinson JG, Farnier M, Cariou B, Blom D, Kereiakes DJ, Lorenzato C, Pordy R, Chaudhari U (2014) Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: rationale and design of the ODYSSEY COMBO I and II trials. BMC Cardiovasc Disord 14:121. doi:10.​1186/​1471-2261-14-121 PubMedCentralPubMed
39.
Zurück zum Zitat Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Grefhorst A, Staels B, Krempf M (2006) Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 281:6211–6218. doi:10.1074/jbc.M508582200 PubMed Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Grefhorst A, Staels B, Krempf M (2006) Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 281:6211–6218. doi:10.​1074/​jbc.​M508582200 PubMed
41.
Zurück zum Zitat Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, Seidah NG, Prat A (2012) Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125:894–901. doi:10.1161/CIRCULATIONAHA.111.057406 PubMed Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, Seidah NG, Prat A (2012) Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125:894–901. doi:10.​1161/​CIRCULATIONAHA.​111.​057406 PubMed
42.
Zurück zum Zitat Desai NR, Giugliano RP, Zhou J, Kohli P, Somaratne R, Hoffman E, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) AMG 145, a monoclonal antibody against PCSK9, facilitates achievement of national cholesterol education program-adult treatment panel III low-density lipoprotein cholesterol goals among high-risk patients: an analysis from the LAPLACE-TIMI 57 trial (LDL-C assessment with PCSK9 monoclonal antibody inhibition combined with statin thErapy-thrombolysis in myocardial infarction 57). J Am Coll Cardiol 63:430–433. doi:10.1016/j.jacc.2013.09.048 PubMed Desai NR, Giugliano RP, Zhou J, Kohli P, Somaratne R, Hoffman E, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) AMG 145, a monoclonal antibody against PCSK9, facilitates achievement of national cholesterol education program-adult treatment panel III low-density lipoprotein cholesterol goals among high-risk patients: an analysis from the LAPLACE-TIMI 57 trial (LDL-C assessment with PCSK9 monoclonal antibody inhibition combined with statin thErapy-thrombolysis in myocardial infarction 57). J Am Coll Cardiol 63:430–433. doi:10.​1016/​j.​jacc.​2013.​09.​048 PubMed
43.
Zurück zum Zitat Desai NR, Kohli P, Giugliano RP, O’Donoghue ML, Somaratne R, Zhou J, Hoffman EB, Huang F, Rogers WJ, Wasserman SM, Scott R, Sabatine MS (2013) AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. Circulation 128:962–969. doi:10.1161/CIRCULATIONAHA.113.001969 PubMed Desai NR, Kohli P, Giugliano RP, O’Donoghue ML, Somaratne R, Zhou J, Hoffman EB, Huang F, Rogers WJ, Wasserman SM, Scott R, Sabatine MS (2013) AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. Circulation 128:962–969. doi:10.​1161/​CIRCULATIONAHA.​113.​001969 PubMed
44.
Zurück zum Zitat DeVay RM, Shelton DL, Liang H (2013) Characterization of proprotein convertase subtilisin/kexin type 9 (PCSK9) trafficking reveals a novel lysosomal targeting mechanism via amyloid precursor-like protein 2 (APLP2). J Biol Chem 288:10805–10818. doi:10.1074/jbc.M113.453373 PubMedCentralPubMed DeVay RM, Shelton DL, Liang H (2013) Characterization of proprotein convertase subtilisin/kexin type 9 (PCSK9) trafficking reveals a novel lysosomal targeting mechanism via amyloid precursor-like protein 2 (APLP2). J Biol Chem 288:10805–10818. doi:10.​1074/​jbc.​M113.​453373 PubMedCentralPubMed
45.
Zurück zum Zitat Dewpura T, Raymond A, Hamelin J, Seidah NG, Mbikay M, Chretien M, Mayne J (2008) PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a phosphoprotein in humans. FEBS J 275:3480–3493. doi:10.1111/j.1742-4658.2008.06495.x PubMed Dewpura T, Raymond A, Hamelin J, Seidah NG, Mbikay M, Chretien M, Mayne J (2008) PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a phosphoprotein in humans. FEBS J 275:3480–3493. doi:10.​1111/​j.​1742-4658.​2008.​06495.​x PubMed
46.
Zurück zum Zitat Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, Crispino CP, Smirnakis KV, Emery MG, Colbert A, Gibbs JP, Retter MW, Cooke BP, Uy ST, Matson M, Stein EA (2012) Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol 60:1888–1898. doi:10.1016/j.jacc.2012.08.986 PubMed Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, Crispino CP, Smirnakis KV, Emery MG, Colbert A, Gibbs JP, Retter MW, Cooke BP, Uy ST, Matson M, Stein EA (2012) Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol 60:1888–1898. doi:10.​1016/​j.​jacc.​2012.​08.​986 PubMed
47.
Zurück zum Zitat Dong B, Wu M, Cao A, Li H, Liu J (2011) Suppression of Idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression. Int J Mol Med 27:103–110. doi:10.3892/ijmm.2010.559 PubMed Dong B, Wu M, Cao A, Li H, Liu J (2011) Suppression of Idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression. Int J Mol Med 27:103–110. doi:10.​3892/​ijmm.​2010.​559 PubMed
48.
Zurück zum Zitat Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, Park SW, Liu J (2010) Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res 51:1486–1495. doi:10.1194/jlr.M003566 PubMedCentralPubMed Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, Park SW, Liu J (2010) Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res 51:1486–1495. doi:10.​1194/​jlr.​M003566 PubMedCentralPubMed
50.
Zurück zum Zitat Duan Y, Chen Y, Hu W, Li X, Yang X, Zhou X, Yin Z, Kong D, Yao Z, Hajjar DP, Liu L, Liu Q, Han J (2012) Peroxisome Proliferator-activated receptor gamma activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem 287:23667–23677. doi:10.1074/jbc.M112.350181 PubMedCentralPubMed Duan Y, Chen Y, Hu W, Li X, Yang X, Zhou X, Yin Z, Kong D, Yao Z, Hajjar DP, Liu L, Liu Q, Han J (2012) Peroxisome Proliferator-activated receptor gamma activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem 287:23667–23677. doi:10.​1074/​jbc.​M112.​350181 PubMedCentralPubMed
51.
Zurück zum Zitat Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, Prat A (2004) Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 24:1454–1459. doi:10.1161/01.ATV.0000134621.14315.43 PubMed Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, Prat A (2004) Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 24:1454–1459. doi:10.​1161/​01.​ATV.​0000134621.​14315.​43 PubMed
53.
55.
Zurück zum Zitat Fisher TS, Lo SP, Pandit S, Mattu M, Santoro JC, Wisniewski D, Cummings RT, Calzetta A, Cubbon RM, Fischer PA, Tarachandani A, De FR, Wright SD, Sparrow CP, Carfi A, Sitlani A (2007) Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J Biol Chem 282:20502–20512. doi:10.1074/jbc.M701634200 PubMed Fisher TS, Lo SP, Pandit S, Mattu M, Santoro JC, Wisniewski D, Cummings RT, Calzetta A, Cubbon RM, Fischer PA, Tarachandani A, De FR, Wright SD, Sparrow CP, Carfi A, Sitlani A (2007) Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J Biol Chem 282:20502–20512. doi:10.​1074/​jbc.​M701634200 PubMed
56.
Zurück zum Zitat Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, Hutabarat RM, Clausen VA, Karsten V, Cehelsky J, Nochur SV, Kotelianski V, Horton J, Mant T, Chiesa J, Ritter J, Munisamy M, Vaishnaw AK, Gollob JA, Simon A (2014) Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383:60–68. doi:10.1016/S0140-6736(13)61914-5 PubMedCentralPubMed Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, Hutabarat RM, Clausen VA, Karsten V, Cehelsky J, Nochur SV, Kotelianski V, Horton J, Mant T, Chiesa J, Ritter J, Munisamy M, Vaishnaw AK, Gollob JA, Simon A (2014) Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383:60–68. doi:10.​1016/​S0140-6736(13)61914-5 PubMedCentralPubMed
57.
Zurück zum Zitat Folsom AR, Peacock JM, Boerwinkle E (2007) Sequence variation in proprotein convertase subtilisin/kexin type 9 serine protease gene, low LDL cholesterol, and cancer incidence. Cancer Epidemiol Biomarkers Prev 16:2455–2458. doi:10.1158/1055-9965.EPI-07-0502 PubMed Folsom AR, Peacock JM, Boerwinkle E (2007) Sequence variation in proprotein convertase subtilisin/kexin type 9 serine protease gene, low LDL cholesterol, and cancer incidence. Cancer Epidemiol Biomarkers Prev 16:2455–2458. doi:10.​1158/​1055-9965.​EPI-07-0502 PubMed
58.
Zurück zum Zitat Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de FA, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920. doi:10.1073/pnas.0805434105 PubMedCentralPubMed Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de FA, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920. doi:10.​1073/​pnas.​0805434105 PubMedCentralPubMed
59.
Zurück zum Zitat Gaudet D, Kereiakes DJ, McKenney JM, Roth EM, Hanotin C, Gipe D, Du Y, Ferrand AC, Ginsberg HN, Stein EA (2014) Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol 114:711–715. doi:10.1016/j.amjcard.2014.05.060 PubMed Gaudet D, Kereiakes DJ, McKenney JM, Roth EM, Hanotin C, Gipe D, Du Y, Ferrand AC, Ginsberg HN, Stein EA (2014) Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol 114:711–715. doi:10.​1016/​j.​amjcard.​2014.​05.​060 PubMed
60.
Zurück zum Zitat Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, Liu T, Mohanavelu S, Hoffman EB, McDonald ST, Abrahamsen TE, Wasserman SM, Scott R, Sabatine MS (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017. doi:10.1016/S0140-6736(12)61770-X PubMedCentralPubMed Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, Liu T, Mohanavelu S, Hoffman EB, McDonald ST, Abrahamsen TE, Wasserman SM, Scott R, Sabatine MS (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017. doi:10.​1016/​S0140-6736(12)61770-X PubMedCentralPubMed
61.
Zurück zum Zitat Grozdanov PN, Petkov PM, Karagyozov LK, Dabeva MD (2006) Expression and localization of PCSK9 in rat hepatic cells. Biochem Cell Biol 84:80–92. doi:10.1139/o05-155 PubMed Grozdanov PN, Petkov PM, Karagyozov LK, Dabeva MD (2006) Expression and localization of PCSK9 in rat hepatic cells. Biochem Cell Biol 84:80–92. doi:10.​1139/​o05-155 PubMed
63.
Zurück zum Zitat Guella I, Asselta R, Ardissino D, Merlini PA, Peyvandi F, Kathiresan S, Mannucci PM, Tubaro M, Duga S (2010) Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res 51:3342–3349. doi:10.1194/jlr.M010009 PubMedCentralPubMed Guella I, Asselta R, Ardissino D, Merlini PA, Peyvandi F, Kathiresan S, Mannucci PM, Tubaro M, Duga S (2010) Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res 51:3342–3349. doi:10.​1194/​jlr.​M010009 PubMedCentralPubMed
64.
Zurück zum Zitat Guo YL, Liu J, Xu RX, Zhu CG, Wu NQ, Jiang LX, Li JJ (2013) Short-term impact of low-dose atorvastatin on serum proprotein convertase subtilisin/kexin type 9. Clin Drug Investig 33:877–883. doi:10.1007/s40261-013-0129-2 PubMed Guo YL, Liu J, Xu RX, Zhu CG, Wu NQ, Jiang LX, Li JJ (2013) Short-term impact of low-dose atorvastatin on serum proprotein convertase subtilisin/kexin type 9. Clin Drug Investig 33:877–883. doi:10.​1007/​s40261-013-0129-2 PubMed
65.
66.
Zurück zum Zitat Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschon H, Mors O, Bentzon JF, Madsen P, Nykjaer A, Glerup S (2014) The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab 19:310–318. doi:10.1016/j.cmet.2013.12.006 PubMed Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschon H, Mors O, Bentzon JF, Madsen P, Nykjaer A, Glerup S (2014) The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab 19:310–318. doi:10.​1016/​j.​cmet.​2013.​12.​006 PubMed
67.
Zurück zum Zitat Han B, Eacho PI, Knierman MD, Troutt JS, Konrad RJ, Yu X, Schroeder KM (2014) Isolation and characterization of the circulating truncated form of PCSK9. J Lipid Res 55:1505–1514. doi:10.1194/jlr.M049346 PubMed Han B, Eacho PI, Knierman MD, Troutt JS, Konrad RJ, Yu X, Schroeder KM (2014) Isolation and characterization of the circulating truncated form of PCSK9. J Lipid Res 55:1505–1514. doi:10.​1194/​jlr.​M049346 PubMed
68.
Zurück zum Zitat Hentze H, Jensen KK, Chia SM, Johns DG, Shaw RJ, Davis HR Jr, Shih SJ, Wong KK (2013) Inverse relationship between LDL cholesterol and PCSK9 plasma levels in dyslipidemic cynomolgus monkeys: effects of LDL lowering by ezetimibe in the absence of statins. Atherosclerosis 231:84–90. doi:10.1016/j.atherosclerosis.2013.08.028 PubMed Hentze H, Jensen KK, Chia SM, Johns DG, Shaw RJ, Davis HR Jr, Shih SJ, Wong KK (2013) Inverse relationship between LDL cholesterol and PCSK9 plasma levels in dyslipidemic cynomolgus monkeys: effects of LDL lowering by ezetimibe in the absence of statins. Atherosclerosis 231:84–90. doi:10.​1016/​j.​atherosclerosis.​2013.​08.​028 PubMed
69.
Zurück zum Zitat Hirayama A, Honarpour N, Yoshida M, Yamashita S, Huang F, Wasserman SM, Teramoto T (2014) Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk–primary results from the phase 2 YUKAWA study. Circ J 78:1073–1082 (DN/JST.JSTAGE/circj/CJ-14-0130 [pii])PubMed Hirayama A, Honarpour N, Yoshida M, Yamashita S, Huang F, Wasserman SM, Teramoto T (2014) Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk–primary results from the phase 2 YUKAWA study. Circ J 78:1073–1082 (DN/JST.JSTAGE/circj/CJ-14-0130 [pii])PubMed
71.
Zurück zum Zitat Holla OL, Laerdahl JK, Strom TB, Tveten K, Cameron J, Berge KE, Leren TP (2011) Removal of acidic residues of the prodomain of PCSK9 increases its activity towards the LDL receptor. Biochem Biophys Res Commun 406:234–238. doi:10.1016/j.bbrc.2011.02.023 PubMed Holla OL, Laerdahl JK, Strom TB, Tveten K, Cameron J, Berge KE, Leren TP (2011) Removal of acidic residues of the prodomain of PCSK9 increases its activity towards the LDL receptor. Biochem Biophys Res Commun 406:234–238. doi:10.​1016/​j.​bbrc.​2011.​02.​023 PubMed
72.
Zurück zum Zitat Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, Mangili F, Sullivan DR, Barter PJ, Rye KA, George PM, Lambert G (2008) Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis 196:659–666. doi:10.1016/j.atherosclerosis.2007.07.022 PubMed Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, Mangili F, Sullivan DR, Barter PJ, Rye KA, George PM, Lambert G (2008) Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis 196:659–666. doi:10.​1016/​j.​atherosclerosis.​2007.​07.​022 PubMed
74.
Zurück zum Zitat Hori M, Ishihara M, Yuasa Y, Makino H, Yanagi K, Tamanaha T, Kishimoto I, Kujiraoka T, Hattori H, Harada-Shiba M (2014) Removal of plasma mature and furin-cleaved proprotein convertase subtilisin/kexin 9 (PCSK9) by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9. J Clin Endocrinol Metab. doi:10.1210/jc.2014-3066 PubMed Hori M, Ishihara M, Yuasa Y, Makino H, Yanagi K, Tamanaha T, Kishimoto I, Kujiraoka T, Hattori H, Harada-Shiba M (2014) Removal of plasma mature and furin-cleaved proprotein convertase subtilisin/kexin 9 (PCSK9) by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9. J Clin Endocrinol Metab. doi:10.​1210/​jc.​2014-3066 PubMed
76.
Zurück zum Zitat Huijgen R, Boekholdt SM, Arsenault BJ, Bao W, Davaine JM, Tabet F, Petrides F, Rye KA, DeMicco DA, Barter PJ, Kastelein JJ, Lambert G (2012) Plasma PCSK9 levels and clinical outcomes in the TNT (Treating to New Targets) trial: a nested case-control study. J Am Coll Cardiol 59:1778–1784. doi:10.1016/j.jacc.2011.12.043 PubMed Huijgen R, Boekholdt SM, Arsenault BJ, Bao W, Davaine JM, Tabet F, Petrides F, Rye KA, DeMicco DA, Barter PJ, Kastelein JJ, Lambert G (2012) Plasma PCSK9 levels and clinical outcomes in the TNT (Treating to New Targets) trial: a nested case-control study. J Am Coll Cardiol 59:1778–1784. doi:10.​1016/​j.​jacc.​2011.​12.​043 PubMed
77.
Zurück zum Zitat Ishibashi M, Masson D, Westerterp M, Wang N, Sayers S, Li R, Welch CL, Tall AR (2010) Reduced VLDL clearance in Apoe(-/-)Npc1(-/-) mice is associated with increased Pcsk9 and Idol expression and decreased hepatic LDL-receptor levels. J Lipid Res 51:2655–2663. doi:10.1194/jlr.M006163 PubMedCentralPubMed Ishibashi M, Masson D, Westerterp M, Wang N, Sayers S, Li R, Welch CL, Tall AR (2010) Reduced VLDL clearance in Apoe(-/-)Npc1(-/-) mice is associated with increased Pcsk9 and Idol expression and decreased hepatic LDL-receptor levels. J Lipid Res 51:2655–2663. doi:10.​1194/​jlr.​M006163 PubMedCentralPubMed
81.
Zurück zum Zitat Koren MJ, Giugliano RP, Raal FJ, Sullivan D, Bolognese M, Langslet G, Civeira F, Somaratne R, Nelson P, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation 129:234–243. doi:10.1161/CIRCULATIONAHA.113.007012 PubMed Koren MJ, Giugliano RP, Raal FJ, Sullivan D, Bolognese M, Langslet G, Civeira F, Somaratne R, Nelson P, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation 129:234–243. doi:10.​1161/​CIRCULATIONAHA.​113.​007012 PubMed
82.
Zurück zum Zitat Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, Kim JB, Scott R, Wasserman SM, Bays H (2014) Anti-PCSK9 monotherapy for hypercholesterolemia: The MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol 63:2531–2540. doi:10.1016/j.jacc.2014.03.018 PubMed Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, Kim JB, Scott R, Wasserman SM, Bays H (2014) Anti-PCSK9 monotherapy for hypercholesterolemia: The MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol 63:2531–2540. doi:10.​1016/​j.​jacc.​2014.​03.​018 PubMed
83.
Zurück zum Zitat Koren MJ, Scott R, Kim JB, Knusel B, Liu T, Lei L, Bolognese M, Wasserman SM (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 380:1995–2006. doi:10.1016/S0140-6736(12)61771-1 PubMed Koren MJ, Scott R, Kim JB, Knusel B, Liu T, Lei L, Bolognese M, Wasserman SM (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 380:1995–2006. doi:10.​1016/​S0140-6736(12)61771-1 PubMed
84.
Zurück zum Zitat Kosenko T, Golder M, Leblond G, Weng W, Lagace TA (2013) Low density lipoprotein binds to proprotein convertase subtilisin/kexin type-9 (PCSK9) in human plasma and inhibits PCSK9-mediated low density lipoprotein receptor degradation. J Biol Chem 288:8279–8288. doi:10.1074/jbc.M112.421370 PubMedCentralPubMed Kosenko T, Golder M, Leblond G, Weng W, Lagace TA (2013) Low density lipoprotein binds to proprotein convertase subtilisin/kexin type-9 (PCSK9) in human plasma and inhibits PCSK9-mediated low density lipoprotein receptor degradation. J Biol Chem 288:8279–8288. doi:10.​1074/​jbc.​M112.​421370 PubMedCentralPubMed
85.
Zurück zum Zitat Kourimate S, Le MC, Langhi C, Jarnoux AL, Ouguerram K, Zair Y, Nguyen P, Krempf M, Cariou B, Costet P (2008) Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem 283:9666–9673. doi:10.1074/jbc.M705831200 PubMed Kourimate S, Le MC, Langhi C, Jarnoux AL, Ouguerram K, Zair Y, Nguyen P, Krempf M, Cariou B, Costet P (2008) Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem 283:9666–9673. doi:10.​1074/​jbc.​M705831200 PubMed
86.
Zurück zum Zitat Kuhnast S, van der Hoorn JW, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, Peyman A, Schafer HL, Schwahn U, Jukema JW, Princen HM (2014) Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 55:2103–2112. doi:10.1194/jlr.M051326 PubMedCentralPubMed Kuhnast S, van der Hoorn JW, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, Peyman A, Schafer HL, Schwahn U, Jukema JW, Princen HM (2014) Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 55:2103–2112. doi:10.​1194/​jlr.​M051326 PubMedCentralPubMed
87.
Zurück zum Zitat Kwakernaak AJ, Lambert G, Slagman MC, Waanders F, Laverman GD, Petrides F, Dikkeschei BD, Navis G, Dullaart RP (2013) Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 226:459–465. doi:10.1016/j.atherosclerosis.2012.11.009 PubMed Kwakernaak AJ, Lambert G, Slagman MC, Waanders F, Laverman GD, Petrides F, Dikkeschei BD, Navis G, Dullaart RP (2013) Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 226:459–465. doi:10.​1016/​j.​atherosclerosis.​2012.​11.​009 PubMed
88.
Zurück zum Zitat Kysenius K, Muggalla P, Matlik K, Arumae U, Huttunen HJ (2012) PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 69:1903–1916. doi:10.1007/s00018-012-0977-6 PubMed Kysenius K, Muggalla P, Matlik K, Arumae U, Huttunen HJ (2012) PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 69:1903–1916. doi:10.​1007/​s00018-012-0977-6 PubMed
89.
Zurück zum Zitat Labonte P, Begley S, Guevin C, Asselin MC, Nassoury N, Mayer G, Prat A, Seidah NG (2009) PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50:17–24. doi:10.1002/hep.22911 PubMed Labonte P, Begley S, Guevin C, Asselin MC, Nassoury N, Mayer G, Prat A, Seidah NG (2009) PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50:17–24. doi:10.​1002/​hep.​22911 PubMed
91.
Zurück zum Zitat Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, Patel S, Sullivan DR, Cohn JS, Rye KA, Barter PJ (2008) Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 54:1038–1045. doi:10.1373/clinchem.2007.099747 PubMed Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, Patel S, Sullivan DR, Cohn JS, Rye KA, Barter PJ (2008) Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 54:1038–1045. doi:10.​1373/​clinchem.​2007.​099747 PubMed
92.
Zurück zum Zitat Lambert G, Petrides F, Chatelais M, Blom DJ, Choque B, Tabet F, Wong G, Rye KA, Hooper AJ, Burnett JR, Barter PJ, Marais AD (2014) Elevated plasma PCSK9 level is equally detrimental for patients with nonfamilial hypercholesterolemia and heterozygous familial hypercholesterolemia, irrespective of low-density lipoprotein receptor defects. J Am Coll Cardiol 63:2365–2373. doi:10.1016/j.jacc.2014.02.538 PubMed Lambert G, Petrides F, Chatelais M, Blom DJ, Choque B, Tabet F, Wong G, Rye KA, Hooper AJ, Burnett JR, Barter PJ, Marais AD (2014) Elevated plasma PCSK9 level is equally detrimental for patients with nonfamilial hypercholesterolemia and heterozygous familial hypercholesterolemia, irrespective of low-density lipoprotein receptor defects. J Am Coll Cardiol 63:2365–2373. doi:10.​1016/​j.​jacc.​2014.​02.​538 PubMed
93.
94.
Zurück zum Zitat Le MC, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P (2013) Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 33:1484–1493. doi:10.1161/ATVBAHA.112.300263 Le MC, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P (2013) Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 33:1484–1493. doi:10.​1161/​ATVBAHA.​112.​300263
95.
Zurück zum Zitat Le MC, Kourimate S, Langhi C, Chetiveaux M, Jarry A, Comera C, Collet X, Kuipers F, Krempf M, Cariou B, Costet P (2009) Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 29:684–690. doi:10.1161/ATVBAHA.108.181586 Le MC, Kourimate S, Langhi C, Chetiveaux M, Jarry A, Comera C, Collet X, Kuipers F, Krempf M, Cariou B, Costet P (2009) Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 29:684–690. doi:10.​1161/​ATVBAHA.​108.​181586
96.
Zurück zum Zitat Lee CJ, Lee YH, Park SW, Kim KJ, Park S, Youn JC, Lee SH, Kang SM, Jang Y (2013) Association of serum proprotein convertase subtilisin/kexin type 9 with carotid intima media thickness in hypertensive subjects. Metabolism 62:845–850. doi:10.1016/j.metabol.2013.01.005 PubMed Lee CJ, Lee YH, Park SW, Kim KJ, Park S, Youn JC, Lee SH, Kang SM, Jang Y (2013) Association of serum proprotein convertase subtilisin/kexin type 9 with carotid intima media thickness in hypertensive subjects. Metabolism 62:845–850. doi:10.​1016/​j.​metabol.​2013.​01.​005 PubMed
98.
Zurück zum Zitat Levy E, Ben Djoudi OA, Spahis S, Sane AT, Garofalo C, Grenier E, Emonnot L, Yara S, Couture P, Beaulieu JF, Menard D, Seidah NG, Elchebly M (2013) PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 227:297–306. doi:10.1016/j.atherosclerosis.2013.01.023 PubMed Levy E, Ben Djoudi OA, Spahis S, Sane AT, Garofalo C, Grenier E, Emonnot L, Yara S, Couture P, Beaulieu JF, Menard D, Seidah NG, Elchebly M (2013) PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 227:297–306. doi:10.​1016/​j.​atherosclerosis.​2013.​01.​023 PubMed
99.
Zurück zum Zitat Li H, Dong B, Park SW, Lee HS, Chen W, Liu J (2009) Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem 284:28885–28895. doi:10.1074/jbc.M109.052407 PubMedCentralPubMed Li H, Dong B, Park SW, Lee HS, Chen W, Liu J (2009) Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem 284:28885–28895. doi:10.​1074/​jbc.​M109.​052407 PubMedCentralPubMed
100.
Zurück zum Zitat Li H, Liu J (2012) The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J 443:757–768. doi:10.1042/BJ20111645 PubMed Li H, Liu J (2012) The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J 443:757–768. doi:10.​1042/​BJ20111645 PubMed
101.
Zurück zum Zitat Li J, Tumanut C, Gavigan JA, Huang WJ, Hampton EN, Tumanut R, Suen KF, Trauger JW, Spraggon G, Lesley SA, Liau G, Yowe D, Harris JL (2007) Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J 406:203–207. doi:10.1042/BJ20070664 PubMedCentralPubMed Li J, Tumanut C, Gavigan JA, Huang WJ, Hampton EN, Tumanut R, Suen KF, Trauger JW, Spraggon G, Lesley SA, Liau G, Yowe D, Harris JL (2007) Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J 406:203–207. doi:10.​1042/​BJ20070664 PubMedCentralPubMed
102.
Zurück zum Zitat Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, Qing P, Wu NQ, Jiang LX, Li JJ (2014) Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234:441–445. doi:10.1016/j.atherosclerosis.2014.04.001 PubMed Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, Qing P, Wu NQ, Jiang LX, Li JJ (2014) Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234:441–445. doi:10.​1016/​j.​atherosclerosis.​2014.​04.​001 PubMed
103.
Zurück zum Zitat Lindholm MW, Elmen J, Fisker N, Hansen HF, Persson R, Moller MR, Rosenbohm C, Orum H, Straarup EM, Koch T (2012) PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther 20:376–381. doi:10.1038/mt.2011.260 PubMedCentralPubMed Lindholm MW, Elmen J, Fisker N, Hansen HF, Persson R, Moller MR, Rosenbohm C, Orum H, Straarup EM, Koch T (2012) PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther 20:376–381. doi:10.​1038/​mt.​2011.​260 PubMedCentralPubMed
104.
Zurück zum Zitat Lipari MT, Li W, Moran P, Kong-Beltran M, Sai T, Lai J, Lin SJ, Kolumam G, Zavala-Solorio J, Izrael-Tomasevic A, Arnott D, Wang J, Peterson AS, Kirchhofer D (2012) Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem 287:43482–43491. doi:10.1074/jbc.M112.380618 PubMedCentralPubMed Lipari MT, Li W, Moran P, Kong-Beltran M, Sai T, Lai J, Lin SJ, Kolumam G, Zavala-Solorio J, Izrael-Tomasevic A, Arnott D, Wang J, Peterson AS, Kirchhofer D (2012) Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem 287:43482–43491. doi:10.​1074/​jbc.​M112.​380618 PubMedCentralPubMed
105.
Zurück zum Zitat Liu M, Wu G, Baysarowich J, Kavana M, Addona GH, Bierilo KK, Mudgett JS, Pavlovic G, Sitlani A, Renger JJ, Hubbard BK, Fisher TS, Zerbinatti CV (2010) PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J Lipid Res 51:2611–2618. doi:10.1194/jlr.M006635 PubMedCentralPubMed Liu M, Wu G, Baysarowich J, Kavana M, Addona GH, Bierilo KK, Mudgett JS, Pavlovic G, Sitlani A, Renger JJ, Hubbard BK, Fisher TS, Zerbinatti CV (2010) PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J Lipid Res 51:2611–2618. doi:10.​1194/​jlr.​M006635 PubMedCentralPubMed
106.
Zurück zum Zitat Mabuchi H, Nohara A, Noguchi T, Kobayashi J, Kawashiri MA, Inoue T, Mori M, Tada H, Nakanishi C, Yagi K, Yamagishi M, Ueda K, Takegoshi T, Miyamoto S, Inazu A, Koizumi J (2014) Genotypic and phenotypic features in homozygous familial hypercholesterolemia caused by proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation. Atherosclerosis 236:54–61. doi:10.1016/j.atherosclerosis.2014.06.005 PubMed Mabuchi H, Nohara A, Noguchi T, Kobayashi J, Kawashiri MA, Inoue T, Mori M, Tada H, Nakanishi C, Yagi K, Yamagishi M, Ueda K, Takegoshi T, Miyamoto S, Inazu A, Koizumi J (2014) Genotypic and phenotypic features in homozygous familial hypercholesterolemia caused by proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation. Atherosclerosis 236:54–61. doi:10.​1016/​j.​atherosclerosis.​2014.​06.​005 PubMed
109.
Zurück zum Zitat Mayer G, Poirier S, Seidah NG (2008) Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem 283:31791–31801. doi:10.1074/jbc.M805971200 PubMed Mayer G, Poirier S, Seidah NG (2008) Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem 283:31791–31801. doi:10.​1074/​jbc.​M805971200 PubMed
110.
Zurück zum Zitat Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, Lahaye SA, Mbikay M, Ooi TC, Chretien M (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 7:22. doi:10.1186/1476-511X-7-22 PubMedCentralPubMed Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, Lahaye SA, Mbikay M, Ooi TC, Chretien M (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 7:22. doi:10.​1186/​1476-511X-7-22 PubMedCentralPubMed
111.
Zurück zum Zitat Mbikay M, Sirois F, Gyamera-Acheampong C, Wang GS, Rippstein P, Chen A, Mayne J, Scott FW, Chretien M (2014) Variable effects of gender and Western diet on lipid and glucose homeostasis in aged PCSK9-deficient C57BL/6 mice. J Diabetes. doi:10.1111/1753-0407.12139 PubMed Mbikay M, Sirois F, Gyamera-Acheampong C, Wang GS, Rippstein P, Chen A, Mayne J, Scott FW, Chretien M (2014) Variable effects of gender and Western diet on lipid and glucose homeostasis in aged PCSK9-deficient C57BL/6 mice. J Diabetes. doi:10.​1111/​1753-0407.​12139 PubMed
112.
Zurück zum Zitat Mbikay M, Sirois F, Mayne J, Wang GS, Chen A, Dewpura T, Prat A, Seidah NG, Chretien M, Scott FW (2010) PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett 584:701–706. doi:10.1016/j.febslet.2009.12.018 PubMed Mbikay M, Sirois F, Mayne J, Wang GS, Chen A, Dewpura T, Prat A, Seidah NG, Chretien M, Scott FW (2010) PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett 584:701–706. doi:10.​1016/​j.​febslet.​2009.​12.​018 PubMed
113.
Zurück zum Zitat McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA (2012) Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 59:2344–2353. doi:10.1016/j.jacc.2012.03.007 PubMed McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA (2012) Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 59:2344–2353. doi:10.​1016/​j.​jacc.​2012.​03.​007 PubMed
115.
Zurück zum Zitat McNutt MC, Lagace TA, Horton JD (2007) Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 282:20799–20803. doi:10.1074/jbc.C700095200 PubMed McNutt MC, Lagace TA, Horton JD (2007) Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 282:20799–20803. doi:10.​1074/​jbc.​C700095200 PubMed
116.
Zurück zum Zitat Melone M, Wilsie L, Palyha O, Strack A, Rashid S (2012) Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol 59:1697–1705. doi:10.1016/j.jacc.2011.11.064 PubMed Melone M, Wilsie L, Palyha O, Strack A, Rashid S (2012) Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol 59:1697–1705. doi:10.​1016/​j.​jacc.​2011.​11.​064 PubMed
117.
Zurück zum Zitat Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, Tailleux A, Stein S, Gomes AP, Suri V, Ellis JL, Lutz TA, Hottiger MO, Sinclair DA, Auwerx J, Schoonjans K, Staels B, Luscher TF, Matter CM (2014) The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J. doi:10.1093/eurheartj/ehu095 PubMedCentralPubMed Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, Tailleux A, Stein S, Gomes AP, Suri V, Ellis JL, Lutz TA, Hottiger MO, Sinclair DA, Auwerx J, Schoonjans K, Staels B, Luscher TF, Matter CM (2014) The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J. doi:10.​1093/​eurheartj/​ehu095 PubMedCentralPubMed
118.
Zurück zum Zitat Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H, Meyers D, Low S, Russo K, DiBella R, Denhez F, Gao M, Myers J, Duke G, Witmer M, Miao B, Ho SP, Khan J, Parker RA (2014) Pharmacologic profile of the adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther 350:412–424. doi:10.1124/jpet.114.214221 PubMed Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H, Meyers D, Low S, Russo K, DiBella R, Denhez F, Gao M, Myers J, Duke G, Witmer M, Miao B, Ho SP, Khan J, Parker RA (2014) Pharmacologic profile of the adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther 350:412–424. doi:10.​1124/​jpet.​114.​214221 PubMed
119.
Zurück zum Zitat Ni YG, Di MS, Condra JH, Peterson LB, Wang W, Wang F, Pandit S, Hammond HA, Rosa R, Cummings RT, Wood DD, Liu X, Bottomley MJ, Shen X, Cubbon RM, Wang SP, Johns DG, Volpari C, Hamuro L, Chin J, Huang L, Zhao JZ, Vitelli S, Haytko P, Wisniewski D, Mitnaul LJ, Sparrow CP, Hubbard B, Carfi A, Sitlani A (2011) A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res 52:78–86. doi:10.1194/jlr.M011445 PubMedCentralPubMed Ni YG, Di MS, Condra JH, Peterson LB, Wang W, Wang F, Pandit S, Hammond HA, Rosa R, Cummings RT, Wood DD, Liu X, Bottomley MJ, Shen X, Cubbon RM, Wang SP, Johns DG, Volpari C, Hamuro L, Chin J, Huang L, Zhao JZ, Vitelli S, Haytko P, Wisniewski D, Mitnaul LJ, Sparrow CP, Hubbard B, Carfi A, Sitlani A (2011) A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res 52:78–86. doi:10.​1194/​jlr.​M011445 PubMedCentralPubMed
120.
Zurück zum Zitat Noguchi T, Kobayashi J, Yagi K, Nohara A, Yamaaki N, Sugihara M, Ito N, Oka R, Kawashiri MA, Tada H, Takata M, Inazu A, Yamagishi M, Mabuchi H (2011) Comparison of effects of bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: results from a crossover study. Atherosclerosis 217:165–170. doi:10.1016/j.atherosclerosis.2011.02.012 PubMed Noguchi T, Kobayashi J, Yagi K, Nohara A, Yamaaki N, Sugihara M, Ito N, Oka R, Kawashiri MA, Tada H, Takata M, Inazu A, Yamagishi M, Mabuchi H (2011) Comparison of effects of bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: results from a crossover study. Atherosclerosis 217:165–170. doi:10.​1016/​j.​atherosclerosis.​2011.​02.​012 PubMed
121.
Zurück zum Zitat Norata GD, Garlaschelli K, Grigore L, Raselli S, Tramontana S, Meneghetti F, Artali R, Noto D, Cefalu AB, Buccianti G, Averna M, Catapano AL (2010) Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles. Atherosclerosis 208:177–182. doi:10.1016/j.atherosclerosis.2009.06.023 PubMed Norata GD, Garlaschelli K, Grigore L, Raselli S, Tramontana S, Meneghetti F, Artali R, Noto D, Cefalu AB, Buccianti G, Averna M, Catapano AL (2010) Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles. Atherosclerosis 208:177–182. doi:10.​1016/​j.​atherosclerosis.​2009.​06.​023 PubMed
123.
Zurück zum Zitat Nozue T, Hattori H, Ishihara M, Iwasaki T, Hirano T, Kawashiri MA, Yamagishi M, Michishita I (2013) Comparison of effects of pitavastatin versus pravastatin on serum proprotein convertase subtilisin/kexin type 9 levels in statin-naive patients with coronary artery disease. Am J Cardiol 111:1415–1419. doi:10.1016/j.amjcard.2013.01.289 PubMed Nozue T, Hattori H, Ishihara M, Iwasaki T, Hirano T, Kawashiri MA, Yamagishi M, Michishita I (2013) Comparison of effects of pitavastatin versus pravastatin on serum proprotein convertase subtilisin/kexin type 9 levels in statin-naive patients with coronary artery disease. Am J Cardiol 111:1415–1419. doi:10.​1016/​j.​amjcard.​2013.​01.​289 PubMed
124.
Zurück zum Zitat Park SW, Moon YA, Horton JD (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 279:50630–50638. doi:10.1074/jbc.M410077200 PubMed Park SW, Moon YA, Horton JD (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 279:50630–50638. doi:10.​1074/​jbc.​M410077200 PubMed
125.
Zurück zum Zitat Persson L, Cao G, Stahle L, Sjoberg BG, Troutt JS, Konrad RJ, Galman C, Wallen H, Eriksson M, Hafstrom I, Lind S, Dahlin M, Amark P, Angelin B, Rudling M (2010) Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol 30:2666–2672. doi:10.1161/ATVBAHA.110.214130 PubMed Persson L, Cao G, Stahle L, Sjoberg BG, Troutt JS, Konrad RJ, Galman C, Wallen H, Eriksson M, Hafstrom I, Lind S, Dahlin M, Amark P, Angelin B, Rudling M (2010) Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol 30:2666–2672. doi:10.​1161/​ATVBAHA.​110.​214130 PubMed
126.
Zurück zum Zitat Persson L, Henriksson P, Westerlund E, Hovatta O, Angelin B, Rudling M (2012) Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler Thromb Vasc Biol 32:810–814. doi:10.1161/ATVBAHA.111.242461 PubMed Persson L, Henriksson P, Westerlund E, Hovatta O, Angelin B, Rudling M (2012) Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler Thromb Vasc Biol 32:810–814. doi:10.​1161/​ATVBAHA.​111.​242461 PubMed
127.
Zurück zum Zitat Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, Mayer H, Nimpf J, Prat A, Seidah NG (2008) The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 283:2363–2372. doi:10.1074/jbc.M708098200 PubMed Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, Mayer H, Nimpf J, Prat A, Seidah NG (2008) The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 283:2363–2372. doi:10.​1074/​jbc.​M708098200 PubMed
128.
Zurück zum Zitat Poirier S, Prat A, Marcinkiewicz E, Paquin J, Chitramuthu BP, Baranowski D, Cadieux B, Bennett HP, Seidah NG (2006) Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J Neurochem 98:838–850. doi:10.1111/j.1471-4159.2006.03928.x PubMed Poirier S, Prat A, Marcinkiewicz E, Paquin J, Chitramuthu BP, Baranowski D, Cadieux B, Bennett HP, Seidah NG (2006) Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J Neurochem 98:838–850. doi:10.​1111/​j.​1471-4159.​2006.​03928.​x PubMed
129.
Zurück zum Zitat Postmus I, Trompet S, de Craen AJ, Buckley BM, Ford I, Stott DJ, Sattar N, Slagboom PE, Westendorp RG, Jukema JW (2013) PCSK9 SNP rs11591147 is associated with low cholesterol levels but not with cognitive performance or noncardiovascular clinical events in an elderly population. J Lipid Res 54:561–566. doi:10.1194/jlr.P033969 PubMedCentralPubMed Postmus I, Trompet S, de Craen AJ, Buckley BM, Ford I, Stott DJ, Sattar N, Slagboom PE, Westendorp RG, Jukema JW (2013) PCSK9 SNP rs11591147 is associated with low cholesterol levels but not with cognitive performance or noncardiovascular clinical events in an elderly population. J Lipid Res 54:561–566. doi:10.​1194/​jlr.​P033969 PubMedCentralPubMed
130.
Zurück zum Zitat Qian YW, Schmidt RJ, Zhang Y, Chu S, Lin A, Wang H, Wang X, Beyer TP, Bensch WR, Li W, Ehsani ME, Lu D, Konrad RJ, Eacho PI, Moller DE, Karathanasis SK, Cao G (2007) Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 48:1488–1498. doi:10.1194/jlr.M700071-JLR200 PubMed Qian YW, Schmidt RJ, Zhang Y, Chu S, Lin A, Wang H, Wang X, Beyer TP, Bensch WR, Li W, Ehsani ME, Lu D, Konrad RJ, Eacho PI, Moller DE, Karathanasis SK, Cao G (2007) Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 48:1488–1498. doi:10.​1194/​jlr.​M700071-JLR200 PubMed
131.
Zurück zum Zitat Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, Stein EA (2012) Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 126:2408–2417. doi:10.1161/CIRCULATIONAHA.112.144055 PubMed Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, Stein EA (2012) Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 126:2408–2417. doi:10.​1161/​CIRCULATIONAHA.​112.​144055 PubMed
132.
Zurück zum Zitat Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langslet G, Bays H, Blom D, Eriksson M, Dent R, Wasserman SM, Huang F, Xue A, Albizem M, Scott R, Stein EA (2014) Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol 63:1278–1288. doi:10.1016/j.jacc.2014.01.006 PubMed Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langslet G, Bays H, Blom D, Eriksson M, Dent R, Wasserman SM, Huang F, Xue A, Albizem M, Scott R, Stein EA (2014) Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol 63:1278–1288. doi:10.​1016/​j.​jacc.​2014.​01.​006 PubMed
133.
Zurück zum Zitat Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, Wasserman SM, Stein EA (2014) Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. doi:10.1016/S0140-6736(14)61374-X Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, Wasserman SM, Stein EA (2014) Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. doi:10.​1016/​S0140-6736(14)61374-X
134.
Zurück zum Zitat Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, Langslet G, Scott R, Olsson AG, Sullivan D, Hovingh GK, Cariou B, Gouni-Berthold I, Somaratne R, Bridges I, Scott R, Wasserman SM, Gaudet D (2014) PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. doi:10.1016/S0140-6736(14)61399-4 Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, Langslet G, Scott R, Olsson AG, Sullivan D, Hovingh GK, Cariou B, Gouni-Berthold I, Somaratne R, Bridges I, Scott R, Wasserman SM, Gaudet D (2014) PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. doi:10.​1016/​S0140-6736(14)61399-4
135.
Zurück zum Zitat Rashid S, Tavori H, Brown PE, Linton MF, He J, Giunzioni I, Fazio S (2014) Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 130:431–441. doi:10.1161/CIRCULATIONAHA.113.006720 PubMed Rashid S, Tavori H, Brown PE, Linton MF, He J, Giunzioni I, Fazio S (2014) Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 130:431–441. doi:10.​1161/​CIRCULATIONAHA.​113.​006720 PubMed
136.
Zurück zum Zitat Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R (2014) Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA 311:1870–1882. doi:10.1001/jama.2014.4030 PubMed Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R (2014) Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA 311:1870–1882. doi:10.​1001/​jama.​2014.​4030 PubMed
137.
Zurück zum Zitat Roche-Molina M, Sanz-Rosa D, Cruz FM, Garcia-Prieto J, Lopez S, Abia R, Muriana FJ, Fuster V, Ibanez B, Bernal JA (2014) Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 35:50–59. doi:10.1161/ATVBAHA.114.303617 PubMed Roche-Molina M, Sanz-Rosa D, Cruz FM, Garcia-Prieto J, Lopez S, Abia R, Muriana FJ, Fuster V, Ibanez B, Bernal JA (2014) Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 35:50–59. doi:10.​1161/​ATVBAHA.​114.​303617 PubMed
138.
Zurück zum Zitat Romano M, Di Taranto MD, D’Agostino MN, Marotta G, Gentile M, Abate G, Mirabelli P, Di NR, Del VL, Rubba P, Fortunato G (2010) Identification and functional characterization of LDLR mutations in familial hypercholesterolemia patients from Southern Italy. Atherosclerosis 210:493–496. doi:10.1016/j.atherosclerosis.2009.11.051 PubMed Romano M, Di Taranto MD, D’Agostino MN, Marotta G, Gentile M, Abate G, Mirabelli P, Di NR, Del VL, Rubba P, Fortunato G (2010) Identification and functional characterization of LDLR mutations in familial hypercholesterolemia patients from Southern Italy. Atherosclerosis 210:493–496. doi:10.​1016/​j.​atherosclerosis.​2009.​11.​051 PubMed
139.
Zurück zum Zitat Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367:1891–1900. doi:10.1056/NEJMoa1201832 PubMed Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367:1891–1900. doi:10.​1056/​NEJMoa1201832 PubMed
140.
Zurück zum Zitat Roth EM, Taskinen MR, Ginsberg HN, Kastelein JJ, Colhoun HM, Robinson JG, Merlet L, Pordy R, Baccara-Dinet MT (2014) Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol 176:55–61. doi:10.1016/j.ijcard.2014.06.049 PubMed Roth EM, Taskinen MR, Ginsberg HN, Kastelein JJ, Colhoun HM, Robinson JG, Merlet L, Pordy R, Baccara-Dinet MT (2014) Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol 176:55–61. doi:10.​1016/​j.​ijcard.​2014.​06.​049 PubMed
141.
Zurück zum Zitat Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, Cianflone K, Seidah NG, Prat A (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31:785–791. doi:10.1161/ATVBAHA.110.220988 PubMed Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, Cianflone K, Seidah NG, Prat A (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31:785–791. doi:10.​1161/​ATVBAHA.​110.​220988 PubMed
142.
Zurück zum Zitat Saavedra YG, Day R, Seidah NG (2012) The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J Biol Chem 287:43492–43501. doi:10.1074/jbc.M112.394023 PubMed Saavedra YG, Day R, Seidah NG (2012) The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J Biol Chem 287:43492–43501. doi:10.​1074/​jbc.​M112.​394023 PubMed
143.
Zurück zum Zitat Saavedra YG, Dufour R, Davignon J, Baass A (2014) PCSK9 R46L, lower LDL, and cardiovascular disease risk in familial hypercholesterolemia: A cross-sectional cohort study. Arterioscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.114.304406 PubMed Saavedra YG, Dufour R, Davignon J, Baass A (2014) PCSK9 R46L, lower LDL, and cardiovascular disease risk in familial hypercholesterolemia: A cross-sectional cohort study. Arterioscler Thromb Vasc Biol. doi:10.​1161/​ATVBAHA.​114.​304406 PubMed
144.
Zurück zum Zitat Sasaki M, Terao Y, Ayaori M, Uto-Kondo H, Iizuka M, Yogo M, Hagisawa K, Takiguchi S, Yakushiji E, Nakaya K, Ogura M, Komatsu T, Ikewaki K (2014) Hepatic overexpression of idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways. Arterioscler Thromb Vasc Biol 34:1171–1178. doi:10.1161/ATVBAHA.113.302670 PubMed Sasaki M, Terao Y, Ayaori M, Uto-Kondo H, Iizuka M, Yogo M, Hagisawa K, Takiguchi S, Yakushiji E, Nakaya K, Ogura M, Komatsu T, Ikewaki K (2014) Hepatic overexpression of idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways. Arterioscler Thromb Vasc Biol 34:1171–1178. doi:10.​1161/​ATVBAHA.​113.​302670 PubMed
146.
Zurück zum Zitat Schroeder CI, Swedberg JE, Withka JM, Rosengren KJ, Akcan M, Clayton DJ, Daly NL, Cheneval O, Borzilleri KA, Griffor M, Stock I, Colless B, Walsh P, Sunderland P, Reyes A, Dullea R, Ammirati M, Liu S, McClure KF, Tu M, Bhattacharya SK, Liras S, Price DA, Craik DJ (2014) Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem Biol 21:284–294. doi:10.1016/j.chembiol.2013.11.014 PubMed Schroeder CI, Swedberg JE, Withka JM, Rosengren KJ, Akcan M, Clayton DJ, Daly NL, Cheneval O, Borzilleri KA, Griffor M, Stock I, Colless B, Walsh P, Sunderland P, Reyes A, Dullea R, Ammirati M, Liu S, McClure KF, Tu M, Bhattacharya SK, Liras S, Price DA, Craik DJ (2014) Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem Biol 21:284–294. doi:10.​1016/​j.​chembiol.​2013.​11.​014 PubMed
147.
Zurück zum Zitat Scotti E, Calamai M, Goulbourne CN, Zhang L, Hong C, Lin RR, Choi J, Pilch PF, Fong LG, Zou P, Ting AY, Pavone FS, Young SG, Tontonoz P (2013) IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol Cell Biol 33:1503–1514. doi:10.1128/MCB.01716-12 PubMedCentralPubMed Scotti E, Calamai M, Goulbourne CN, Zhang L, Hong C, Lin RR, Choi J, Pilch PF, Fong LG, Zou P, Ting AY, Pavone FS, Young SG, Tontonoz P (2013) IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol Cell Biol 33:1503–1514. doi:10.​1128/​MCB.​01716-12 PubMedCentralPubMed
148.
Zurück zum Zitat Scotti E, Hong C, Yoshinaga Y, Tu Y, Hu Y, Zelcer N, Boyadjian R, de Jong PJ, Young SG, Fong LG, Tontonoz P (2011) Targeted disruption of the idol gene alters cellular regulation of the low-density lipoprotein receptor by sterols and liver x receptor agonists. Mol Cell Biol 31:1885–1893. doi:10.1128/MCB.01469-10 PubMedCentralPubMed Scotti E, Hong C, Yoshinaga Y, Tu Y, Hu Y, Zelcer N, Boyadjian R, de Jong PJ, Young SG, Fong LG, Tontonoz P (2011) Targeted disruption of the idol gene alters cellular regulation of the low-density lipoprotein receptor by sterols and liver x receptor agonists. Mol Cell Biol 31:1885–1893. doi:10.​1128/​MCB.​01469-10 PubMedCentralPubMed
150.
Zurück zum Zitat Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100:928–933. doi:10.1073/pnas.0335507100 PubMedCentralPubMed Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100:928–933. doi:10.​1073/​pnas.​0335507100 PubMedCentralPubMed
151.
152.
154.
Zurück zum Zitat Shen L, Peng HC, Nees SN, Zhao SP, Xu DY (2013) Proprotein convertase subtilisin/kexin type 9 potentially influences cholesterol uptake in macrophages and reverse cholesterol transport. FEBS Lett 587:1271–1274. doi:10.1016/j.febslet.2013.02.027 PubMed Shen L, Peng HC, Nees SN, Zhao SP, Xu DY (2013) Proprotein convertase subtilisin/kexin type 9 potentially influences cholesterol uptake in macrophages and reverse cholesterol transport. FEBS Lett 587:1271–1274. doi:10.​1016/​j.​febslet.​2013.​02.​027 PubMed
156.
Zurück zum Zitat Sorrentino V, Fouchier SW, Motazacker MM, Nelson JK, Defesche JC, Dallinga-Thie GM, Kastelein JJ, Kees HG, Zelcer N (2013) Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur Heart J 34:1292–1297. doi:10.1093/eurheartj/ehs472 PubMed Sorrentino V, Fouchier SW, Motazacker MM, Nelson JK, Defesche JC, Dallinga-Thie GM, Kastelein JJ, Kees HG, Zelcer N (2013) Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur Heart J 34:1292–1297. doi:10.​1093/​eurheartj/​ehs472 PubMed
157.
Zurück zum Zitat Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, Wu R, Pordy R (2012) Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 380:29–36. doi:10.1016/S0140-6736(12)60771-5 PubMed Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, Wu R, Pordy R (2012) Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 380:29–36. doi:10.​1016/​S0140-6736(12)60771-5 PubMed
158.
Zurück zum Zitat Stein EA, Giugliano RP, Koren MJ, Raal FJ, Roth EM, Weiss R, Sullivan D, Wasserman SM, Somaratne R, Kim JB, Yang J, Liu T, Albizem M, Scott R, Sabatine MS (2014) Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. doi:10.1093/eurheartj/ehu085 Stein EA, Giugliano RP, Koren MJ, Raal FJ, Roth EM, Weiss R, Sullivan D, Wasserman SM, Somaratne R, Kim JB, Yang J, Liu T, Albizem M, Scott R, Sabatine MS (2014) Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. doi:10.​1093/​eurheartj/​ehu085
159.
Zurück zum Zitat Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ (2013) Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128:2113–2120. doi:10.1161/CIRCULATIONAHA.113.004678 PubMed Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ (2013) Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128:2113–2120. doi:10.​1161/​CIRCULATIONAHA.​113.​004678 PubMed
160.
Zurück zum Zitat Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, Lisbon E, Gutierrez M, Webb C, Wu R, Du Y, Kranz T, Gasparino E, Swergold GD (2012) Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 366:1108–1118. doi:10.1056/NEJMoa1105803 PubMed Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, Lisbon E, Gutierrez M, Webb C, Wu R, Du Y, Kranz T, Gasparino E, Swergold GD (2012) Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 366:1108–1118. doi:10.​1056/​NEJMoa1105803 PubMed
161.
Zurück zum Zitat Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, Bruckert E, Cho L, Dent R, Knusel B, Xue A, Scott R, Wasserman SM, Rocco M (2014) Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: The GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol 63:2541–2548. doi:10.1016/j.jacc.2014.03.019 PubMed Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, Bruckert E, Cho L, Dent R, Knusel B, Xue A, Scott R, Wasserman SM, Rocco M (2014) Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: The GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol 63:2541–2548. doi:10.​1016/​j.​jacc.​2014.​03.​019 PubMed
162.
Zurück zum Zitat Strom TB, Holla OL, Tveten K, Cameron J, Berge KE, Leren TP (2010) Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol Genet Metab 101:76–80. doi:10.1016/j.ymgme.2010.05.003 PubMed Strom TB, Holla OL, Tveten K, Cameron J, Berge KE, Leren TP (2010) Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol Genet Metab 101:76–80. doi:10.​1016/​j.​ymgme.​2010.​05.​003 PubMed
163.
164.
Zurück zum Zitat Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, Wasserman SM, Stein EA (2012) Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 308:2497–2506. doi:10.1001/jama.2012.25790 PubMed Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, Wasserman SM, Stein EA (2012) Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 308:2497–2506. doi:10.​1001/​jama.​2012.​25790 PubMed
165.
Zurück zum Zitat Tang Z, Jiang L, Peng J, Ren Z, Wei D, Wu C, Pan L, Jiang Z, Liu L (2012) PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int J Mol Med 30:931–938. doi:10.3892/ijmm.2012.1072 PubMed Tang Z, Jiang L, Peng J, Ren Z, Wei D, Wu C, Pan L, Jiang Z, Liu L (2012) PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int J Mol Med 30:931–938. doi:10.​3892/​ijmm.​2012.​1072 PubMed
166.
Zurück zum Zitat Tao R, Xiong X, DePinho RA, Deng CX, Dong XC (2013) FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 288:29252–29259. doi:10.1074/jbc.M113.481473 PubMedCentralPubMed Tao R, Xiong X, DePinho RA, Deng CX, Dong XC (2013) FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 288:29252–29259. doi:10.​1074/​jbc.​M113.​481473 PubMedCentralPubMed
170.
171.
Zurück zum Zitat Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, Christie JD, Nakada TA, Fjell CD, Thair SA, Cirstea MS, Boyd JH (2014) PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med 6:25843. doi:10.1126/scitranslmed.3008782 Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, Christie JD, Nakada TA, Fjell CD, Thair SA, Cirstea MS, Boyd JH (2014) PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med 6:25843. doi:10.​1126/​scitranslmed.​3008782
173.
Zurück zum Zitat Werner C, Hoffmann MM, Winkler K, Bohm M, Laufs U (2014) Risk prediction with proprotein convertase subtilisin/kexin type 9 (PCSK9) in patients with stable coronary disease on statin treatment. Vascul Pharmacol 62:94–102. doi:10.1016/j.vph.2014.03.004 PubMed Werner C, Hoffmann MM, Winkler K, Bohm M, Laufs U (2014) Risk prediction with proprotein convertase subtilisin/kexin type 9 (PCSK9) in patients with stable coronary disease on statin treatment. Vascul Pharmacol 62:94–102. doi:10.​1016/​j.​vph.​2014.​03.​004 PubMed
174.
Zurück zum Zitat Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS (2012) PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 359:347–358. doi:10.1007/s11010-011-1028-6 PubMed Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS (2012) PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 359:347–358. doi:10.​1007/​s11010-011-1028-6 PubMed
176.
Zurück zum Zitat Wu Q, Tang ZH, Peng J, Liao L, Pan LH, Wu CY, Jiang ZS, Wang GX, Liu LS (2014) The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression (Review). Biomed Rep 2:167–171. doi:10.3892/br.2013.213 PubMedCentralPubMed Wu Q, Tang ZH, Peng J, Liao L, Pan LH, Wu CY, Jiang ZS, Wang GX, Liu LS (2014) The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression (Review). Biomed Rep 2:167–171. doi:10.​3892/​br.​2013.​213 PubMedCentralPubMed
177.
Zurück zum Zitat Xiao HB, Sun ZL, Zhang HB, Zhang DS (2012) Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol Rep 64:889–895PubMed Xiao HB, Sun ZL, Zhang HB, Zhang DS (2012) Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol Rep 64:889–895PubMed
178.
Zurück zum Zitat Xu W, Liu L, Hornby D (2012) c-IAP1 binds and processes PCSK9 protein: linking the c-IAP1 in a TNF-alpha pathway to PCSK9-mediated LDLR degradation pathway. Molecules 17:12086–12101. doi:10.3390/molecules171012086 PubMed Xu W, Liu L, Hornby D (2012) c-IAP1 binds and processes PCSK9 protein: linking the c-IAP1 in a TNF-alpha pathway to PCSK9-mediated LDLR degradation pathway. Molecules 17:12086–12101. doi:10.​3390/​molecules1710120​86 PubMed
179.
Zurück zum Zitat Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH (2007) Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 282:18602–18612. doi:10.1074/jbc.M702027200 PubMed Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH (2007) Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 282:18602–18612. doi:10.​1074/​jbc.​M702027200 PubMed
180.
Zurück zum Zitat Zhang Y, Eigenbrot C, Zhou L, Shia S, Li W, Quan C, Tom J, Moran P, Di LP, Skelton NJ, Kong-Beltran M, Peterson A, Kirchhofer D (2014) Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem 289:942–955. doi:10.1074/jbc.M113.514067 PubMedCentralPubMed Zhang Y, Eigenbrot C, Zhou L, Shia S, Li W, Quan C, Tom J, Moran P, Di LP, Skelton NJ, Kong-Beltran M, Peterson A, Kirchhofer D (2014) Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem 289:942–955. doi:10.​1074/​jbc.​M113.​514067 PubMedCentralPubMed
181.
Metadaten
Titel
Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9)
verfasst von
Rainer Schulz
Klaus-Dieter Schlüter
Ulrich Laufs
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Basic Research in Cardiology / Ausgabe 2/2015
Print ISSN: 0300-8428
Elektronische ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-015-0463-z

Weitere Artikel der Ausgabe 2/2015

Basic Research in Cardiology 2/2015 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.