Skip to main content
Erschienen in: Acta Neuropathologica 3/2013

01.09.2013 | Review

Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms

verfasst von: John K. Fink

Erschienen in: Acta Neuropathologica | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), “mutilating sensory neuropathy with spastic paraplegia” owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.
Literatur
1.
Zurück zum Zitat Abou Jamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795PubMed Abou Jamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795PubMed
2.
Zurück zum Zitat Abou-áJamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795 Abou-áJamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795
3.
Zurück zum Zitat Abou-Donia MB (1981) Organophosphorus ester-induced delayed neurotoxicity. Ann Rev Pharmacol Toxicol 21:511–548 Abou-Donia MB (1981) Organophosphorus ester-induced delayed neurotoxicity. Ann Rev Pharmacol Toxicol 21:511–548
4.
Zurück zum Zitat Ahmed FE, Qureshi IM, Wooldridge MAW, Pejaver RK (1996) Hereditary spastic paraplegia and Evans’s syndrome. Acta Paediat 85:879–881PubMed Ahmed FE, Qureshi IM, Wooldridge MAW, Pejaver RK (1996) Hereditary spastic paraplegia and Evans’s syndrome. Acta Paediat 85:879–881PubMed
5.
Zurück zum Zitat Al-Saif A, Bohlega S, Al-Mohanna F (2012) Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol 72:510–516PubMed Al-Saif A, Bohlega S, Al-Mohanna F (2012) Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol 72:510–516PubMed
6.
Zurück zum Zitat Al-Yahyaee S, Al-Gazali LI, De Jonghe P et al (2006) A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 66:1230–1234PubMed Al-Yahyaee S, Al-Gazali LI, De Jonghe P et al (2006) A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 66:1230–1234PubMed
7.
Zurück zum Zitat Al-Yahyaee S, Al-Gazali LI, De JP et al (2006) A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 66:1230–1234PubMed Al-Yahyaee S, Al-Gazali LI, De JP et al (2006) A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 66:1230–1234PubMed
8.
Zurück zum Zitat Alazami AM, Adly N, Al DH, Alkuraya FS (2011) A nullimorphic ERLIN2 mutation defines a complicated Hereditary Spastic Paraplegia locus (SPG18). Neurogenetics 12:333–336PubMed Alazami AM, Adly N, Al DH, Alkuraya FS (2011) A nullimorphic ERLIN2 mutation defines a complicated Hereditary Spastic Paraplegia locus (SPG18). Neurogenetics 12:333–336PubMed
9.
Zurück zum Zitat Aldahmesh MA, Mohamed J, Alkuraya H et al (2011) Recessive mutations in ELOVL4 Cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet 89:745–750PubMed Aldahmesh MA, Mohamed J, Alkuraya H et al (2011) Recessive mutations in ELOVL4 Cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet 89:745–750PubMed
10.
Zurück zum Zitat Allan W, Herndon CN, Dudley FC (1944) Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic 48:325–334 Allan W, Herndon CN, Dudley FC (1944) Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic 48:325–334
11.
Zurück zum Zitat Anderson FH (1979) Nerofibrillary degeneration on Guam. Brain 102:65–77PubMed Anderson FH (1979) Nerofibrillary degeneration on Guam. Brain 102:65–77PubMed
12.
Zurück zum Zitat Anheim M, Lagier-Tourenne C, Stevanin G et al (2009) SPG11 spastic paraplegia. A new cause of juvenile Parkinsonism. J Neurol 256:104–108PubMed Anheim M, Lagier-Tourenne C, Stevanin G et al (2009) SPG11 spastic paraplegia. A new cause of juvenile Parkinsonism. J Neurol 256:104–108PubMed
13.
Zurück zum Zitat Antonicka H, Oÿstergaard E, Sasarman F et al (2010) Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am Journal Hum Genet 87:115–122 Antonicka H, Oÿstergaard E, Sasarman F et al (2010) Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am Journal Hum Genet 87:115–122
14.
Zurück zum Zitat Aparicio-Erriu IM, Prehn JH (2012) Molecular mechanisms in amyotrophic lateral sclerosis: the role of angiogenin, a secreted RNase. Front Neurosci 6:167PubMed Aparicio-Erriu IM, Prehn JH (2012) Molecular mechanisms in amyotrophic lateral sclerosis: the role of angiogenin, a secreted RNase. Front Neurosci 6:167PubMed
15.
Zurück zum Zitat Arnoldi A, Tonelli A, Crippa F et al (2008) A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum Mutat 29:522–531PubMed Arnoldi A, Tonelli A, Crippa F et al (2008) A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum Mutat 29:522–531PubMed
16.
Zurück zum Zitat Ashley-Koch A, Kail ME, Nance M, Gaskell P, Svenson I, Marchuck DA, Pericack-Vance MA, Zuchner S (2005) A new locus for autosomal dominant hereditary spastic paraplegia (SPG29) maps to chromosome. Am J Hum Genet 2:12 Ashley-Koch A, Kail ME, Nance M, Gaskell P, Svenson I, Marchuck DA, Pericack-Vance MA, Zuchner S (2005) A new locus for autosomal dominant hereditary spastic paraplegia (SPG29) maps to chromosome. Am J Hum Genet 2:12
17.
Zurück zum Zitat Atkins J, Glynn P (2000) Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J Biol Chem 275:24477–24483PubMed Atkins J, Glynn P (2000) Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J Biol Chem 275:24477–24483PubMed
18.
Zurück zum Zitat Atorino L, Silvestri L, Koppen M et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163:777–787PubMed Atorino L, Silvestri L, Koppen M et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163:777–787PubMed
19.
Zurück zum Zitat Auer-Grumbach M, Schlotter-Weigel B, Lochmuller H et al (2005) Phenotypes of the N88S Berardinelli-Seip congenital lipodystrophy 2 mutation. Ann Neurol 57:415–424PubMed Auer-Grumbach M, Schlotter-Weigel B, Lochmuller H et al (2005) Phenotypes of the N88S Berardinelli-Seip congenital lipodystrophy 2 mutation. Ann Neurol 57:415–424PubMed
20.
Zurück zum Zitat Bakowska JC, Jenkins R, Pendleton J, Blackstone C (2005) The Troyer syndrome (SPG20) protein spartin interacts with Eps15. Biochem Biophys Res Comm 334(4):1042–1048PubMed Bakowska JC, Jenkins R, Pendleton J, Blackstone C (2005) The Troyer syndrome (SPG20) protein spartin interacts with Eps15. Biochem Biophys Res Comm 334(4):1042–1048PubMed
21.
Zurück zum Zitat Barlowe C (2009) Atlasin GTPases shape up ER networks. Dev Cell 17:157–158PubMed Barlowe C (2009) Atlasin GTPases shape up ER networks. Dev Cell 17:157–158PubMed
22.
Zurück zum Zitat Bateman A, Jouet M, MacFarlane J, Du JS, Kenwrick S, Chothia C (1996) Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders. EMBO J 15:6050–6059PubMed Bateman A, Jouet M, MacFarlane J, Du JS, Kenwrick S, Chothia C (1996) Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders. EMBO J 15:6050–6059PubMed
23.
Zurück zum Zitat Bauer P, Leshinsky-Silver E, Blumkin L et al (2012) Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). Neurogenetics 13:73–76PubMed Bauer P, Leshinsky-Silver E, Blumkin L et al (2012) Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). Neurogenetics 13:73–76PubMed
24.
Zurück zum Zitat Beetz C, Schule R, Deconinck T et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131:1078–1086PubMed Beetz C, Schule R, Deconinck T et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131:1078–1086PubMed
25.
Zurück zum Zitat Behan W, Maia M (1974) Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37:8–20PubMed Behan W, Maia M (1974) Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37:8–20PubMed
26.
Zurück zum Zitat Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76PubMed Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76PubMed
27.
Zurück zum Zitat Bettencourt da Cruz A, Wentzell J, Kretzschmar D (2008) Swiss cheese, a protein involved in progressive neurodegeneration, acts as a noncanonical regulatory subunit for PKA-C3. J Neurosci 28:10885–10892PubMed Bettencourt da Cruz A, Wentzell J, Kretzschmar D (2008) Swiss cheese, a protein involved in progressive neurodegeneration, acts as a noncanonical regulatory subunit for PKA-C3. J Neurosci 28:10885–10892PubMed
28.
Zurück zum Zitat Bialer MG, Lawrence L, Stevenson RE et al (1992) Allan-Herndon-Dudley syndrome: clinical and linkage studies on a second family. Am J Med Genet 43:491–497PubMed Bialer MG, Lawrence L, Stevenson RE et al (1992) Allan-Herndon-Dudley syndrome: clinical and linkage studies on a second family. Am J Med Genet 43:491–497PubMed
29.
Zurück zum Zitat Bian X, Klemm RW, Liu TY et al (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes.In: Proceedings of National Academy of Sciences of USA Bian X, Klemm RW, Liu TY et al (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes.In: Proceedings of National Academy of Sciences of USA
30.
Zurück zum Zitat Biancheri R, Ciccolella M, Rossi A et al (2009) White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1. Neuromuscul Disord 19:62–65PubMed Biancheri R, Ciccolella M, Rossi A et al (2009) White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1. Neuromuscul Disord 19:62–65PubMed
31.
Zurück zum Zitat Bien-Willner R, Sambuughin N, Holley H, Bodensteiner J, Sivakumar K (2006) Childhood-onset spastic paraplegia with NIPA1 gene mutation. J Child Neurol 21:974–977PubMed Bien-Willner R, Sambuughin N, Holley H, Bodensteiner J, Sivakumar K (2006) Childhood-onset spastic paraplegia with NIPA1 gene mutation. J Child Neurol 21:974–977PubMed
32.
Zurück zum Zitat Blair MA, Ma S, Hedera P (2006) Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics 7:47–50PubMed Blair MA, Ma S, Hedera P (2006) Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics 7:47–50PubMed
33.
Zurück zum Zitat Blumen SC, Bevan S, Abu-Mouch S et al (2003) A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol 54:796–803PubMed Blumen SC, Bevan S, Abu-Mouch S et al (2003) A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol 54:796–803PubMed
34.
Zurück zum Zitat Blumkin L, Lerman-Sagie T, Lev D, Yosovich K, Leshinsky-Silver E (2011) A new locus (SPG47) maps to 1p13.2-1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum. J Neurol Sci 305:67–70PubMed Blumkin L, Lerman-Sagie T, Lev D, Yosovich K, Leshinsky-Silver E (2011) A new locus (SPG47) maps to 1p13.2-1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum. J Neurol Sci 305:67–70PubMed
35.
Zurück zum Zitat Botzolakis EJ, Zhao J, Gurba KN, Macdonald RL, Hedera P (2011) The effect of HSP-causing mutations in SPG3A and NIPA1 on the assembly, trafficking, and interaction between atlastin-1 and NIPA1. Mol Cell Neurosci 46:122–135PubMed Botzolakis EJ, Zhao J, Gurba KN, Macdonald RL, Hedera P (2011) The effect of HSP-causing mutations in SPG3A and NIPA1 on the assembly, trafficking, and interaction between atlastin-1 and NIPA1. Mol Cell Neurosci 46:122–135PubMed
36.
Zurück zum Zitat Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M (2006) Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet 43:441–443PubMed Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M (2006) Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet 43:441–443PubMed
37.
Zurück zum Zitat Bouhouche A, Benomar A, Bouslam N, Ouazzani R, Chkili T, Yahyaoui M (2006) Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31-14.1. Eur J Hum Genet 14:249–252PubMed Bouhouche A, Benomar A, Bouslam N, Ouazzani R, Chkili T, Yahyaoui M (2006) Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31-14.1. Eur J Hum Genet 14:249–252PubMed
38.
Zurück zum Zitat Boukhris A, Feki I, Elleuch N et al (2010) A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics 11:441–448PubMed Boukhris A, Feki I, Elleuch N et al (2010) A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics 11:441–448PubMed
39.
Zurück zum Zitat Bouslam N, Benomar A, Azzedine H et al (2005) Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol 57:567–571PubMed Bouslam N, Benomar A, Azzedine H et al (2005) Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol 57:567–571PubMed
40.
Zurück zum Zitat Bross P, Naundrup S, Hansen J et al (2008) The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 283:15694–15700PubMed Bross P, Naundrup S, Hansen J et al (2008) The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 283:15694–15700PubMed
41.
Zurück zum Zitat Browman DT, Resek ME, Zajchowski LD, Robbins SM (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 119:3149–3160PubMed Browman DT, Resek ME, Zajchowski LD, Robbins SM (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 119:3149–3160PubMed
42.
Zurück zum Zitat Brugman F, Scheffer H, Wokke JHJ et al (2008) Paraplegin mutations in apparently sporadic adult-onset upper motor neuron syndromes. Neurology 71:1500–1505PubMed Brugman F, Scheffer H, Wokke JHJ et al (2008) Paraplegin mutations in apparently sporadic adult-onset upper motor neuron syndromes. Neurology 71:1500–1505PubMed
43.
Zurück zum Zitat Buge A, Escourolle R, Rancurel G, Gray F, Pertuiset BF (1979) Strumpell-Lorrains familial spasmodic paraplegia - anatomical and clinical review and report on a new case. Rev Neurol (Paris) 135:329–337 Buge A, Escourolle R, Rancurel G, Gray F, Pertuiset BF (1979) Strumpell-Lorrains familial spasmodic paraplegia - anatomical and clinical review and report on a new case. Rev Neurol (Paris) 135:329–337
44.
Zurück zum Zitat Burger J, Metzke H, Paternotte C, Schilling F, Hazan J, Reis A (1996) Autosomal dominant spastic paraplegia with anticipation maps to a 4-cM interval on chromosome 2p21-p24 in a large German family. Hum Genet 98:371–375PubMed Burger J, Metzke H, Paternotte C, Schilling F, Hazan J, Reis A (1996) Autosomal dominant spastic paraplegia with anticipation maps to a 4-cM interval on chromosome 2p21-p24 in a large German family. Hum Genet 98:371–375PubMed
45.
Zurück zum Zitat Byrne PC, Webb S, McSweeney F, Burke T, Hutchinson M, Parfrey N (1998) Linkage of AD HSP and cognitive impairment to chromosome 2p: haplotype and phenotype analysis indicates variable expression and low or delayed penetrance. Eur J Hum Genet 6:275–282PubMed Byrne PC, Webb S, McSweeney F, Burke T, Hutchinson M, Parfrey N (1998) Linkage of AD HSP and cognitive impairment to chromosome 2p: haplotype and phenotype analysis indicates variable expression and low or delayed penetrance. Eur J Hum Genet 6:275–282PubMed
46.
Zurück zum Zitat Cambi F, Tang XM, Cordray P, Fain PR, Keppen LD, Barker DF (1996) Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia. Neurology 46:1112–1117PubMed Cambi F, Tang XM, Cordray P, Fain PR, Keppen LD, Barker DF (1996) Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia. Neurology 46:1112–1117PubMed
47.
Zurück zum Zitat Casari G, Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983PubMed Casari G, Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983PubMed
48.
Zurück zum Zitat Charvin D, Fonknechten N, Cifuentes-Diaz C, Joshi V, Hazan J, Melki J, Betuing S (2003) Mutations in SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized to the nucleus. Am J Hum Genet 12:71–78 Charvin D, Fonknechten N, Cifuentes-Diaz C, Joshi V, Hazan J, Melki J, Betuing S (2003) Mutations in SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized to the nucleus. Am J Hum Genet 12:71–78
49.
Zurück zum Zitat Chen S, Song C, Guo H, Xu P, Huang W et al (2005) Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat 25:135–141PubMed Chen S, Song C, Guo H, Xu P, Huang W et al (2005) Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat 25:135–141PubMed
50.
Zurück zum Zitat Clemen CS, Tangavelou K, Strucksberg KH et al (2010) Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain 133:2920–2941PubMed Clemen CS, Tangavelou K, Strucksberg KH et al (2010) Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain 133:2920–2941PubMed
51.
Zurück zum Zitat Connell JW, Lindon C, Luzio JP, Reid E (2009) Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10:42–56PubMed Connell JW, Lindon C, Luzio JP, Reid E (2009) Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10:42–56PubMed
52.
Zurück zum Zitat Criscuolo C, Filla A, Coppola G et al (2009) Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. J Neurol 256:1252–1257PubMed Criscuolo C, Filla A, Coppola G et al (2009) Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. J Neurol 256:1252–1257PubMed
53.
Zurück zum Zitat Crosby AH, Patel H, Patton MA, Proukakis C, Cross H (2002) Spartin, the Troyer syndrome gene, suggests defective endosomal trafficking underlies some forms of hereditary spastic paraplegia. Am J Hum Genet 71:516 (Ref Type: Abstract) Crosby AH, Patel H, Patton MA, Proukakis C, Cross H (2002) Spartin, the Troyer syndrome gene, suggests defective endosomal trafficking underlies some forms of hereditary spastic paraplegia. Am J Hum Genet 71:516 (Ref Type: Abstract)
54.
Zurück zum Zitat Cross HE, McKusick VA (1967) The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. Arch Neurol 16:473–485PubMed Cross HE, McKusick VA (1967) The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. Arch Neurol 16:473–485PubMed
55.
Zurück zum Zitat Dalpozzo F, Rossetto MG, Boaretto MS et al (2003) Infancy onset hereditary spastic paraplegia associated with a novel atlastin mutation. Neurology 61:580–581PubMed Dalpozzo F, Rossetto MG, Boaretto MS et al (2003) Infancy onset hereditary spastic paraplegia associated with a novel atlastin mutation. Neurology 61:580–581PubMed
56.
Zurück zum Zitat de Bot ST, van de Warrenburg BP, Kremer HP, Willemsen MA (2010) Child neurology: hereditary spastic paraplegia in children. Neurology 75:e75–e79PubMed de Bot ST, van de Warrenburg BP, Kremer HP, Willemsen MA (2010) Child neurology: hereditary spastic paraplegia in children. Neurology 75:e75–e79PubMed
57.
Zurück zum Zitat De Laurenzi V, Rogers GR, Hamrock DJ, Marekov LN, Steinert PM, Compton JG, Markova N, Rizzo WB (1996) Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat Genet 12(1):52–57PubMed De Laurenzi V, Rogers GR, Hamrock DJ, Marekov LN, Steinert PM, Compton JG, Markova N, Rizzo WB (1996) Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat Genet 12(1):52–57PubMed
58.
Zurück zum Zitat Dell’Angelica EC, Mullins C, Bonifacino JS (1999) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274:7278–7285PubMed Dell’Angelica EC, Mullins C, Bonifacino JS (1999) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274:7278–7285PubMed
59.
Zurück zum Zitat Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584PubMed Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584PubMed
60.
Zurück zum Zitat DeMichele G, DeFusco M, Cavalcanti F et al (1998) A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am J Hum Genet 63:135–139 DeMichele G, DeFusco M, Cavalcanti F et al (1998) A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am J Hum Genet 63:135–139
61.
Zurück zum Zitat Dennis SC, Green NE (1988) Hereditary spastic paraplegia. J Pediatr Orthop 8:413–417PubMed Dennis SC, Green NE (1988) Hereditary spastic paraplegia. J Pediatr Orthop 8:413–417PubMed
62.
Zurück zum Zitat Dick KJ, Al-Mjeni R, Baskir W et al (2008) A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology 71:248–252PubMed Dick KJ, Al-Mjeni R, Baskir W et al (2008) A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology 71:248–252PubMed
63.
Zurück zum Zitat Dick KJ, Eckhardt M, Paisan-Ruiz C et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31:E1251–E1260PubMed Dick KJ, Eckhardt M, Paisan-Ruiz C et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31:E1251–E1260PubMed
64.
Zurück zum Zitat Du J, Hu YC, Tang BS et al (2011) Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1. Clin Neurol Neurosurg 113:480–482PubMed Du J, Hu YC, Tang BS et al (2011) Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1. Clin Neurol Neurosurg 113:480–482PubMed
65.
Zurück zum Zitat Dudek BR, Richardson RJ (1982) Evidence for the existence of neurotoxic esterase in neural and lymphatic tissue of the adult hen. Biochem Pharmacol 31:1117–1121PubMed Dudek BR, Richardson RJ (1982) Evidence for the existence of neurotoxic esterase in neural and lymphatic tissue of the adult hen. Biochem Pharmacol 31:1117–1121PubMed
66.
Zurück zum Zitat Durr A, Brice A, Serdaru M et al (1994) The phenotype of “pure” autosomal dominant spastic paraplegia. Neurology 44:1274–1277PubMed Durr A, Brice A, Serdaru M et al (1994) The phenotype of “pure” autosomal dominant spastic paraplegia. Neurology 44:1274–1277PubMed
67.
Zurück zum Zitat Durr A, Davoine C-S, Paternotte C et al (1996) Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain 119:1487–1496PubMed Durr A, Davoine C-S, Paternotte C et al (1996) Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain 119:1487–1496PubMed
68.
Zurück zum Zitat Dursun U, Koroglu C, Kocasoy OE, Ugur SA, Tolun A (2009) Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1. Neurogenetics 10:325–331PubMed Dursun U, Koroglu C, Kocasoy OE, Ugur SA, Tolun A (2009) Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1. Neurogenetics 10:325–331PubMed
69.
Zurück zum Zitat Evans K, Keller C, Gasgow K, Conn B, Lauring B (2006) Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc Natl Acad Sci (USA) 103:10666–10671 Evans K, Keller C, Gasgow K, Conn B, Lauring B (2006) Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc Natl Acad Sci (USA) 103:10666–10671
70.
Zurück zum Zitat Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP (2005) Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 168:599–606PubMed Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP (2005) Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 168:599–606PubMed
71.
Zurück zum Zitat Fassier C, Hutt JA, Scholpp S et al (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13:1380–1387PubMed Fassier C, Hutt JA, Scholpp S et al (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13:1380–1387PubMed
72.
Zurück zum Zitat Feinstein M, Markus B, Noyman I et al (2010) Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 87:820–828PubMed Feinstein M, Markus B, Noyman I et al (2010) Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 87:820–828PubMed
73.
Zurück zum Zitat Ferreirinha F, Quattrini A, Pirozzi M et al (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113:231–242PubMed Ferreirinha F, Quattrini A, Pirozzi M et al (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113:231–242PubMed
74.
Zurück zum Zitat Fichera M, Lo Giudice M, Falco M et al (2004) Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63:1108–1110PubMed Fichera M, Lo Giudice M, Falco M et al (2004) Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63:1108–1110PubMed
75.
Zurück zum Zitat Fink JK (2011) In: Rimoin D (ed) Hereditary spastic paraplegia. Churchill LivingstoneElsevier, Philadelphia Fink JK (2011) In: Rimoin D (ed) Hereditary spastic paraplegia. Churchill LivingstoneElsevier, Philadelphia
76.
Zurück zum Zitat Fink JK (2007) Hereditary Spastic Paraplegias. In: Schapira AHV (ed) Neurology and clinical neurosciences. Mosby Elsevier, Philadelphia, pp 899–910 Fink JK (2007) Hereditary Spastic Paraplegias. In: Schapira AHV (ed) Neurology and clinical neurosciences. Mosby Elsevier, Philadelphia, pp 899–910
77.
Zurück zum Zitat Fink JK, Sharp G, Lange B et al (1995) Autosomal dominant hereditary spastic paraparesis, type I: clinical and genetic analysis of a large North American family. Neurology 45:325–331PubMed Fink JK, Sharp G, Lange B et al (1995) Autosomal dominant hereditary spastic paraparesis, type I: clinical and genetic analysis of a large North American family. Neurology 45:325–331PubMed
78.
Zurück zum Zitat Fink JK, Wu C-TB, Jones SM et al (1995) Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am J Hum Genet 56:188–192PubMed Fink JK, Wu C-TB, Jones SM et al (1995) Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am J Hum Genet 56:188–192PubMed
79.
Zurück zum Zitat Fontaine B, Davoine C-S, Durr A et al (2000) A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 66:702–707PubMed Fontaine B, Davoine C-S, Durr A et al (2000) A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 66:702–707PubMed
80.
Zurück zum Zitat Franca MC Jr, D’Abreu A, Maurer-Morelli CV et al (2007) Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord 22:1556–1562PubMed Franca MC Jr, D’Abreu A, Maurer-Morelli CV et al (2007) Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord 22:1556–1562PubMed
81.
Zurück zum Zitat Fujita Y, Fujii T, Nishio A, Tuboi K, Tsuji K, Nakamura M (1990) Familial case of May-Hegglin anomaly associated with familial spastic paraplegia. Am J Hematol 35:219–221PubMed Fujita Y, Fujii T, Nishio A, Tuboi K, Tsuji K, Nakamura M (1990) Familial case of May-Hegglin anomaly associated with familial spastic paraplegia. Am J Hematol 35:219–221PubMed
82.
Zurück zum Zitat Garner CC, Garner A, Huber G, Kozak C, Matus A (1990) Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. J Neurochem 55:146–154PubMed Garner CC, Garner A, Huber G, Kozak C, Matus A (1990) Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. J Neurochem 55:146–154PubMed
83.
Zurück zum Zitat Gillooly DJ, Simonsen A, Stenmark H (2001) Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 355:249–258PubMed Gillooly DJ, Simonsen A, Stenmark H (2001) Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 355:249–258PubMed
84.
Zurück zum Zitat Glynn P (1999) Neuropathy target esterase. Biochem J 344:625–631PubMed Glynn P (1999) Neuropathy target esterase. Biochem J 344:625–631PubMed
85.
Zurück zum Zitat Glynn P (2000) Neural development and neurodegeneration: two faces of neuropathy target esterase. Prog Neurobiol 61:61–74PubMed Glynn P (2000) Neural development and neurodegeneration: two faces of neuropathy target esterase. Prog Neurobiol 61:61–74PubMed
86.
Zurück zum Zitat Guelly C, Zhu PP, Leonardis L et al (2011) Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum Genet 88:99–105PubMed Guelly C, Zhu PP, Leonardis L et al (2011) Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum Genet 88:99–105PubMed
87.
Zurück zum Zitat Haberlova J, Claeys KG, Zamecnik J, De JP, Seeman P (2008) Extending the clinical spectrum of SPG3A mutations to a very severe and very early complicated phenotype. J Neurol 255:927–928PubMed Haberlova J, Claeys KG, Zamecnik J, De JP, Seeman P (2008) Extending the clinical spectrum of SPG3A mutations to a very severe and very early complicated phenotype. J Neurol 255:927–928PubMed
88.
Zurück zum Zitat Hanein S, Durr A, Ribai P et al (2007) A novel locus for autosomal dominant ‘uncomplicated’ hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3. Hum Genet 122:261–273PubMed Hanein S, Durr A, Ribai P et al (2007) A novel locus for autosomal dominant ‘uncomplicated’ hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3. Hum Genet 122:261–273PubMed
89.
Zurück zum Zitat Hanein S, Martin E, Boukhris A et al (2008) Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet 82:992–1002PubMed Hanein S, Martin E, Boukhris A et al (2008) Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet 82:992–1002PubMed
90.
Zurück zum Zitat Hanna MC, Blackstone C (2009) Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics 10:217–228PubMed Hanna MC, Blackstone C (2009) Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics 10:217–228PubMed
91.
Zurück zum Zitat Hansen J, Corydon TJ, Palmfeldt J et al (2008) Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 153:474–482PubMed Hansen J, Corydon TJ, Palmfeldt J et al (2008) Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 153:474–482PubMed
92.
Zurück zum Zitat Hansen JJ, Durr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a muatation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332PubMed Hansen JJ, Durr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a muatation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332PubMed
93.
Zurück zum Zitat Harding AE (1993) Hereditary spastic paraplegias. Semin Neurol 13:333–336PubMed Harding AE (1993) Hereditary spastic paraplegias. Semin Neurol 13:333–336PubMed
94.
Zurück zum Zitat Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155PubMed Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155PubMed
95.
Zurück zum Zitat Hazan J, Fontaine B, Bruyn RPM et al (1994) Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum Mol Genet 3:1569–1573PubMed Hazan J, Fontaine B, Bruyn RPM et al (1994) Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum Mol Genet 3:1569–1573PubMed
96.
Zurück zum Zitat Hazan J, Lamy C, Melki J, Munnich A, de Recondo J, Weissenbach J (1993) Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet 5:163–167PubMed Hazan J, Lamy C, Melki J, Munnich A, de Recondo J, Weissenbach J (1993) Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet 5:163–167PubMed
97.
Zurück zum Zitat Hedera P, DiMauro S, Bonilla E, Wald J, Eldevik OP, Fink JK (1999) Phenotypic analysis of autosomal dominant hereditary spastic paraplegia linked to chromosome 8q. Neurology 53:44–50PubMed Hedera P, DiMauro S, Bonilla E, Wald J, Eldevik OP, Fink JK (1999) Phenotypic analysis of autosomal dominant hereditary spastic paraplegia linked to chromosome 8q. Neurology 53:44–50PubMed
98.
Zurück zum Zitat Hedera P, Eldevik OP, Maly P, Rainier S, Fink JK (2005) Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 47:730–734PubMed Hedera P, Eldevik OP, Maly P, Rainier S, Fink JK (2005) Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 47:730–734PubMed
99.
Zurück zum Zitat Hedera P, Rainier S, Alvarado D et al (1999) Novel locus for autosomal dominant hereditary spastic paraplegia on chromosome 8q. Am J Hum Genet 64:563–569PubMed Hedera P, Rainier S, Alvarado D et al (1999) Novel locus for autosomal dominant hereditary spastic paraplegia on chromosome 8q. Am J Hum Genet 64:563–569PubMed
100.
Zurück zum Zitat Hentati A, Pericack-Vance MA, Hung W-Y, Belal S, Laing N, Boustani RM, Hentati F, Hamida MB, Siddique T (1994) Linkage of the “pure” recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Hum Genet 3:1263–1267 Hentati A, Pericack-Vance MA, Hung W-Y, Belal S, Laing N, Boustani RM, Hentati F, Hamida MB, Siddique T (1994) Linkage of the “pure” recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Hum Genet 3:1263–1267
101.
Zurück zum Zitat Hentati A, Pericak-Vance MA, Lennon F et al (1994) Linkage of the late onset autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum Mol Genet 3:1867–1871PubMed Hentati A, Pericak-Vance MA, Lennon F et al (1994) Linkage of the late onset autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum Mol Genet 3:1867–1871PubMed
102.
Zurück zum Zitat Hirst J, Barlow D, Francisco GC et al (2011) The fifth adaptor protein complex. PLoS Biol 9:e1001170PubMed Hirst J, Barlow D, Francisco GC et al (2011) The fifth adaptor protein complex. PLoS Biol 9:e1001170PubMed
103.
Zurück zum Zitat Hirst J, Irving C, Borner GH (2013) Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14(2):153–164PubMed Hirst J, Irving C, Borner GH (2013) Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14(2):153–164PubMed
104.
Zurück zum Zitat Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802PubMed Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802PubMed
105.
Zurück zum Zitat Hodgkinson CA, Bohlega S, Abu-Amero SN et al (2002) A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology 59:1905–1909PubMed Hodgkinson CA, Bohlega S, Abu-Amero SN et al (2002) A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology 59:1905–1909PubMed
106.
Zurück zum Zitat Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC (2010) Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72PubMed Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC (2010) Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72PubMed
107.
Zurück zum Zitat Hudson LD (2003) Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J Child Neurol 18:616–624PubMed Hudson LD (2003) Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J Child Neurol 18:616–624PubMed
108.
Zurück zum Zitat Hughes CA, Byrne PC, Webb S et al (2001) SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology 56:1230–1233PubMed Hughes CA, Byrne PC, Webb S et al (2001) SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology 56:1230–1233PubMed
109.
Zurück zum Zitat Ito D, Fujisawa T, Iida H, Suzuki N (2008) Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 31:266–277PubMed Ito D, Fujisawa T, Iida H, Suzuki N (2008) Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 31:266–277PubMed
110.
Zurück zum Zitat Ito D, Suzuki N (2007) Seipin/BSCL2-related motor neuron disease: seipinopathy is a novel conformational disease associated with endoplasmic reticulum stress. Rinsho Shinkeigaku 47:329–335PubMed Ito D, Suzuki N (2007) Seipin/BSCL2-related motor neuron disease: seipinopathy is a novel conformational disease associated with endoplasmic reticulum stress. Rinsho Shinkeigaku 47:329–335PubMed
111.
Zurück zum Zitat Ito D, Suzuki N (2009) Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132:8–15PubMed Ito D, Suzuki N (2009) Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132:8–15PubMed
112.
Zurück zum Zitat Ivanova N, Claeys KG, Deconinck T et al (2007) Hereditary spastic paraplegia 3A associated with axonal neuropathy. Arch Neurol 64:706–713PubMed Ivanova N, Claeys KG, Deconinck T et al (2007) Hereditary spastic paraplegia 3A associated with axonal neuropathy. Arch Neurol 64:706–713PubMed
113.
Zurück zum Zitat Jagell S, Gustavson KH, Holmgren G (1981) Sjogren–Larsson syndrome in Sweden: a clinical, genetic and epidemiological study. Clin Genet 19:233–256PubMed Jagell S, Gustavson KH, Holmgren G (1981) Sjogren–Larsson syndrome in Sweden: a clinical, genetic and epidemiological study. Clin Genet 19:233–256PubMed
114.
Zurück zum Zitat Jagell S, Linden S (1982) Ichtyosis in the Sjogren–Larsson syndrome. Clin Genet 21:243–252PubMed Jagell S, Linden S (1982) Ichtyosis in the Sjogren–Larsson syndrome. Clin Genet 21:243–252PubMed
115.
Zurück zum Zitat Jia D, Gomez TS, Metlagel Z et al (2010) WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci USA 107:10442–10447PubMed Jia D, Gomez TS, Metlagel Z et al (2010) WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci USA 107:10442–10447PubMed
116.
Zurück zum Zitat Johnson MK (1974) The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J Neurochem 23:785–789PubMed Johnson MK (1974) The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J Neurochem 23:785–789PubMed
117.
Zurück zum Zitat Johnson MK, Glynn P (2001) Neuropathy target esterase. In: Krieger RI (ed) Handbook of pesticide toxicology. Academic Press, San Diego, pp 953–965 Johnson MK, Glynn P (2001) Neuropathy target esterase. In: Krieger RI (ed) Handbook of pesticide toxicology. Academic Press, San Diego, pp 953–965
118.
Zurück zum Zitat Jouet M, Rosenthal A, Armstrong G et al (1994) X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet 7:402–407PubMed Jouet M, Rosenthal A, Armstrong G et al (1994) X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet 7:402–407PubMed
119.
Zurück zum Zitat Kasher PR, De Vos KJ, Wharton SB et al (2009) Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 110:34–44PubMed Kasher PR, De Vos KJ, Wharton SB et al (2009) Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 110:34–44PubMed
120.
Zurück zum Zitat Kenwrick S, Watkins A, De Angelis E (2000) Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Gen 9:879–886PubMed Kenwrick S, Watkins A, De Angelis E (2000) Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Gen 9:879–886PubMed
121.
Zurück zum Zitat Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79:942–948PubMed Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79:942–948PubMed
122.
Zurück zum Zitat Kisanuki YY, Rainier S, Moore J, Saunders T, Wilkinson JE, Fink JK (2008) Animal model of SPG6 hereditary spastic paraplegia. Am J Hum Genet: 1794/T Kisanuki YY, Rainier S, Moore J, Saunders T, Wilkinson JE, Fink JK (2008) Animal model of SPG6 hereditary spastic paraplegia. Am J Hum Genet: 1794/T
123.
Zurück zum Zitat Klebe S, Azzedine H, Durr A et al (2006) Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain 129:1456–1462 Klebe S, Azzedine H, Durr A et al (2006) Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain 129:1456–1462
124.
Zurück zum Zitat Klebe S, Lossos A, Azzedine H et al (2012) KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur J Hum Genet 20:645–649PubMed Klebe S, Lossos A, Azzedine H et al (2012) KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur J Hum Genet 20:645–649PubMed
125.
Zurück zum Zitat Kobayashi H, Hoffman EP, Marks HG (1994) The rumpshaker mutation in spastic paraplegia. Nature Genet 7:351–352PubMed Kobayashi H, Hoffman EP, Marks HG (1994) The rumpshaker mutation in spastic paraplegia. Nature Genet 7:351–352PubMed
126.
Zurück zum Zitat Krabbe K, Nielsen JE, Fallentin E, Fenger K, Herning M (1997) MRI of autosomal dominant pure spastic paraplegia. Neuroradiology 39:724–727PubMed Krabbe K, Nielsen JE, Fallentin E, Fenger K, Herning M (1997) MRI of autosomal dominant pure spastic paraplegia. Neuroradiology 39:724–727PubMed
127.
Zurück zum Zitat Kruer MC, Paisan-Ruiz C, Boddaert N et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68:611–618PubMed Kruer MC, Paisan-Ruiz C, Boddaert N et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68:611–618PubMed
128.
Zurück zum Zitat Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, Philip SG, Hendriksz C, Morton JEV, Kingston HM, Rosser EM, Wassmer E, Gissen P, Maher ER (2008) Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70:1623–1629PubMed Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, Philip SG, Hendriksz C, Morton JEV, Kingston HM, Rosser EM, Wassmer E, Gissen P, Maher ER (2008) Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70:1623–1629PubMed
129.
Zurück zum Zitat Kuru S, Sakai M, Konagaya M, Yoshida M, Hashizume Y (2005) Autopsy case of hereditary spastic paraplegia with thin corpus callosum showing severe gliosis in the cerebral white matter. Neuropathology 25:346–352PubMed Kuru S, Sakai M, Konagaya M, Yoshida M, Hashizume Y (2005) Autopsy case of hereditary spastic paraplegia with thin corpus callosum showing severe gliosis in the cerebral white matter. Neuropathology 25:346–352PubMed
130.
Zurück zum Zitat Lamari F, Mochel F, Sedel F, and Saudubray JM (2012) Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis: 1–15 Lamari F, Mochel F, Sedel F, and Saudubray JM (2012) Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis: 1–15
131.
Zurück zum Zitat Lee JA, Gao FB (2012) Neuronal functions of ESCRTs. Exp Neurobiol 21:9–15PubMed Lee JA, Gao FB (2012) Neuronal functions of ESCRTs. Exp Neurobiol 21:9–15PubMed
132.
Zurück zum Zitat Lin P, Li J, Liu Q et al (2008) A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet 83:752–759PubMed Lin P, Li J, Liu Q et al (2008) A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet 83:752–759PubMed
133.
Zurück zum Zitat Lin P, Mao F, Liu Q, Shao C, Yan C, Gong Y (2010) Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG42) caused by SLC33A1 mutation in a Chinese kindred. Prenat Diagn 30:485–486PubMed Lin P, Mao F, Liu Q, Shao C, Yan C, Gong Y (2010) Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG42) caused by SLC33A1 mutation in a Chinese kindred. Prenat Diagn 30:485–486PubMed
134.
Zurück zum Zitat Lind GE, Raiborg C, Danielsen SA et al (2011) SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis. Oncogene 30:3967–3978PubMed Lind GE, Raiborg C, Danielsen SA et al (2011) SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis. Oncogene 30:3967–3978PubMed
135.
Zurück zum Zitat Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neuro Lett 491:168–173 Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neuro Lett 491:168–173
136.
Zurück zum Zitat Lu J, Rashid F, Byrne PC (2006) The hereditary spastic paraplegia protein spartin localises to mitochondria. J Neurochem 98:1908–1919PubMed Lu J, Rashid F, Byrne PC (2006) The hereditary spastic paraplegia protein spartin localises to mitochondria. J Neurochem 98:1908–1919PubMed
137.
Zurück zum Zitat Lynex C, Carr I, Leek J et al (2004) Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. BMC Neurology 4:20PubMed Lynex C, Carr I, Leek J et al (2004) Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. BMC Neurology 4:20PubMed
138.
Zurück zum Zitat Macedo-Souza LI, Kok F, Santos S et al (2005) Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13. Ann Neurol 57:730–737PubMed Macedo-Souza LI, Kok F, Santos S et al (2005) Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13. Ann Neurol 57:730–737PubMed
139.
Zurück zum Zitat Macedo-Souza LI, Kok F, Santos S et al (2008) Reevaluation of a large family defines a new locus for X-linked recessive pure spastic paraplegia (SPG34) on chromosome Xq25. Neurogenetics 9:225–226PubMed Macedo-Souza LI, Kok F, Santos S et al (2008) Reevaluation of a large family defines a new locus for X-linked recessive pure spastic paraplegia (SPG34) on chromosome Xq25. Neurogenetics 9:225–226PubMed
140.
Zurück zum Zitat Magre J, Delepine M, Khallouf E et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370PubMed Magre J, Delepine M, Khallouf E et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370PubMed
141.
Zurück zum Zitat Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G (2009) Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 29:9244–9254PubMed Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G (2009) Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 29:9244–9254PubMed
142.
Zurück zum Zitat Mannan AU, Krawen P, Sauter SM et al (2006) ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am J Hum Genet 79:351–357PubMed Mannan AU, Krawen P, Sauter SM et al (2006) ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am J Hum Genet 79:351–357PubMed
143.
Zurück zum Zitat Maranduba CM, Friesema EC, Kok F et al (2006) Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter. J Med Genet 43:457–460PubMed Maranduba CM, Friesema EC, Kok F et al (2006) Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter. J Med Genet 43:457–460PubMed
144.
Zurück zum Zitat Martinez-Lage M, Molina-Porcel L, Falcone D et al (2012) TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation. Acta Neuropathol 124:285–291PubMed Martinez-Lage M, Molina-Porcel L, Falcone D et al (2012) TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation. Acta Neuropathol 124:285–291PubMed
145.
Zurück zum Zitat Martinez-Murillo F, Kobayashi H, Pegoraro E et al (1999) Genetic localization of a new locus for recessive spastic paraplegia to 15q13-15. Neurology 53:50–56PubMed Martinez-Murillo F, Kobayashi H, Pegoraro E et al (1999) Genetic localization of a new locus for recessive spastic paraplegia to 15q13-15. Neurology 53:50–56PubMed
146.
Zurück zum Zitat Marx J (1991) Alzheimer’s research moves to mice. Science 253:266–267PubMed Marx J (1991) Alzheimer’s research moves to mice. Science 253:266–267PubMed
147.
Zurück zum Zitat Mattiazzi M, Vijayvergiya C, Gajewski CD et al (2004) The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet 13:869–879PubMed Mattiazzi M, Vijayvergiya C, Gajewski CD et al (2004) The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet 13:869–879PubMed
148.
Zurück zum Zitat McDermott CJ, Dayaratne RK, Tomkins J et al (2001) Paraplegin gene analysis in hereditary spastic paraparesis (HSP) pedigrees in northeast England. Neurology 56:467–471PubMed McDermott CJ, Dayaratne RK, Tomkins J et al (2001) Paraplegin gene analysis in hereditary spastic paraparesis (HSP) pedigrees in northeast England. Neurology 56:467–471PubMed
149.
Zurück zum Zitat McHale DP, Mitchell S, Bundey S et al (1999) A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. Am J Hum Genet 64:526–532PubMed McHale DP, Mitchell S, Bundey S et al (1999) A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. Am J Hum Genet 64:526–532PubMed
150.
Zurück zum Zitat Meijer IA, Cossette P, Roussel J, Benard M, Toupin S, Rouleau GA (2004) A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol 56:579–582PubMed Meijer IA, Cossette P, Roussel J, Benard M, Toupin S, Rouleau GA (2004) A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol 56:579–582PubMed
151.
Zurück zum Zitat Meilleur KG, Traore M, Sangare M et al (2010) Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19. Neurogenetics 11:313–318PubMed Meilleur KG, Traore M, Sangare M et al (2010) Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19. Neurogenetics 11:313–318PubMed
152.
Zurück zum Zitat Meyer T, Schwan A, Dullinger JS et al (2005) Early-onset ALS with long-term survival associated with spastin gene mutation. Neurology 65:141–143PubMed Meyer T, Schwan A, Dullinger JS et al (2005) Early-onset ALS with long-term survival associated with spastin gene mutation. Neurology 65:141–143PubMed
153.
Zurück zum Zitat Micheli F, Cersosimo MG, Zuniga RC (2006) Hereditary spastic paraplegia associated with dopa-responsive Parkinsonism. Mov Disord 21:716–717PubMed Micheli F, Cersosimo MG, Zuniga RC (2006) Hereditary spastic paraplegia associated with dopa-responsive Parkinsonism. Mov Disord 21:716–717PubMed
154.
Zurück zum Zitat Milewska M, McRedmond J, Byrne PC (2009) Identification of novel spartin-interactors shows spartin is a multifunctional protein. J Neurochem 111:1022–1030PubMed Milewska M, McRedmond J, Byrne PC (2009) Identification of novel spartin-interactors shows spartin is a multifunctional protein. J Neurochem 111:1022–1030PubMed
155.
Zurück zum Zitat Ming L, Rainier S, Mathay J, and Fink JK (2005) Hereditary spastic paraplegia with incomplete genetic penetrance and genetic anticipation. (Manuscript submitted to Neurology, 2005) Ming L, Rainier S, Mathay J, and Fink JK (2005) Hereditary spastic paraplegia with incomplete genetic penetrance and genetic anticipation. (Manuscript submitted to Neurology, 2005)
156.
Zurück zum Zitat Mitchell S, Bundey S (1997) Symmetry of neurological signs in Pakistani patients with probable inherited spastic cerebral palsy. Clin Genet 51(1):7–14PubMed Mitchell S, Bundey S (1997) Symmetry of neurological signs in Pakistani patients with probable inherited spastic cerebral palsy. Clin Genet 51(1):7–14PubMed
157.
Zurück zum Zitat Montenegro G, Rebelo AP, Connell J et al (2012) Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest 122:538–544PubMed Montenegro G, Rebelo AP, Connell J et al (2012) Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest 122:538–544PubMed
158.
Zurück zum Zitat Moreno-De-Luca A, Helmers SL, Mao H et al (2011) Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet 48:141–144PubMed Moreno-De-Luca A, Helmers SL, Mao H et al (2011) Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet 48:141–144PubMed
159.
Zurück zum Zitat Mroue RM, El-Sabban ME, Talhouk RS (2011) Connexins and the gap in context. Integr Biol (Camb) 3:255–266 Mroue RM, El-Sabban ME, Talhouk RS (2011) Connexins and the gap in context. Integr Biol (Camb) 3:255–266
160.
Zurück zum Zitat Muglia M, Criscuolo C, Magariello A et al (2004) Narrowing of the critical region in autosomal recessive spastic paraplegia linked to the SPG5 locus. Neurogenetics 5:49–54PubMed Muglia M, Criscuolo C, Magariello A et al (2004) Narrowing of the critical region in autosomal recessive spastic paraplegia linked to the SPG5 locus. Neurogenetics 5:49–54PubMed
161.
Zurück zum Zitat Murphy S, Gorman G, Beetz C et al (2009) Dementia in SPG4 hereditary spastic paraplegia: clinical, genetic, and neuropathologic evidence. Neurology 73:378–384PubMed Murphy S, Gorman G, Beetz C et al (2009) Dementia in SPG4 hereditary spastic paraplegia: clinical, genetic, and neuropathologic evidence. Neurology 73:378–384PubMed
162.
Zurück zum Zitat Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63PubMed Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63PubMed
163.
Zurück zum Zitat Nielsen JE, Johnsen B, Koefoed P et al (2004) Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation. Eur J Neurol 11:817–824PubMed Nielsen JE, Johnsen B, Koefoed P et al (2004) Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation. Eur J Neurol 11:817–824PubMed
164.
Zurück zum Zitat Nielsen JE, Koefoed P, Abell K et al (1997) CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. Hum Mol Genet 6:1811–1816PubMed Nielsen JE, Koefoed P, Abell K et al (1997) CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. Hum Mol Genet 6:1811–1816PubMed
165.
Zurück zum Zitat Nimityongskul P, Anderson LD, Sri P (1992) Hereditary spastic paraplegia. Orthop Rev 21:643–646PubMed Nimityongskul P, Anderson LD, Sri P (1992) Hereditary spastic paraplegia. Orthop Rev 21:643–646PubMed
166.
Zurück zum Zitat Nomura H, Koike F, Tsuruta Y, Iwaki A, Iwaki T (2001) Autopsy case of autosomal recessive hereditary spastic paraplegia with reference to the muscular pathology. Neuropathology 21:212–217PubMed Nomura H, Koike F, Tsuruta Y, Iwaki A, Iwaki T (2001) Autopsy case of autosomal recessive hereditary spastic paraplegia with reference to the muscular pathology. Neuropathology 21:212–217PubMed
167.
Zurück zum Zitat Orlacchio A, Babalini C, Borreca A et al (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133:591–598PubMed Orlacchio A, Babalini C, Borreca A et al (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133:591–598PubMed
168.
Zurück zum Zitat Orlacchio A, Gaudiello F, Totaro A et al (2004) A new SPG4 mutation in a variant form of spastic paraplegia with congenital arachnoid cysts. Neurology 62:1875–1878PubMed Orlacchio A, Gaudiello F, Totaro A et al (2004) A new SPG4 mutation in a variant form of spastic paraplegia with congenital arachnoid cysts. Neurology 62:1875–1878PubMed
169.
Zurück zum Zitat Orlacchio A, Kawarai T, Totaro A et al (2004) Hereditary spastic paraplegia: clinical genetic study of 15 families. Arch Neurol 61:849–855PubMed Orlacchio A, Kawarai T, Totaro A et al (2004) Hereditary spastic paraplegia: clinical genetic study of 15 families. Arch Neurol 61:849–855PubMed
170.
Zurück zum Zitat Orlacchio A, Montieri P, Babalini C, Gaudiello F, Bernardi G, Kawarai T (2011) Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation. J Neurol 258:1361–1363PubMed Orlacchio A, Montieri P, Babalini C, Gaudiello F, Bernardi G, Kawarai T (2011) Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation. J Neurol 258:1361–1363PubMed
171.
Zurück zum Zitat Orlacchio A, Patrono C, Gaudiello F et al (2008) Silver syndrome variant of hereditary spastic paraplegia: a locus to 4p and allelism with SPG4. Neurology 70:1959–1966PubMed Orlacchio A, Patrono C, Gaudiello F et al (2008) Silver syndrome variant of hereditary spastic paraplegia: a locus to 4p and allelism with SPG4. Neurology 70:1959–1966PubMed
172.
Zurück zum Zitat Orthmann-Murphy JL, Salsano E, Abrams CK et al (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438PubMed Orthmann-Murphy JL, Salsano E, Abrams CK et al (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438PubMed
173.
Zurück zum Zitat Oz-Levi D, Ben-Zeev B, Ruzzo E et al (2012) Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 91:1065–1072PubMed Oz-Levi D, Ben-Zeev B, Ruzzo E et al (2012) Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 91:1065–1072PubMed
174.
Zurück zum Zitat Park SH, Zhu P–P, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110PubMed Park SH, Zhu P–P, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110PubMed
175.
Zurück zum Zitat Park SH, Zhu PP, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110PubMed Park SH, Zhu PP, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110PubMed
176.
Zurück zum Zitat Patel H, Cross H, Proukakis C et al (2002) SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 31:347–348PubMed Patel H, Cross H, Proukakis C et al (2002) SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 31:347–348PubMed
177.
Zurück zum Zitat Patel H, Hart PE, Warner TT et al (2001) The silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet 69:209–215PubMed Patel H, Hart PE, Warner TT et al (2001) The silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet 69:209–215PubMed
178.
Zurück zum Zitat Paternotte C, Rudnicki D, Fizames C et al (1998) Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. Genome Res 8:1216–1227PubMed Paternotte C, Rudnicki D, Fizames C et al (1998) Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. Genome Res 8:1216–1227PubMed
179.
Zurück zum Zitat Pratt AJ, Getzoff ED, Perry JJP (2012) Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscular Dis 2:1–14 Pratt AJ, Getzoff ED, Perry JJP (2012) Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscular Dis 2:1–14
180.
Zurück zum Zitat Proukakis C, Cross H, Patel H, Patton MA, Valentine A, Crosby AH (2004) Troyer syndrome revisited. A clinical and radiological study of a complicated hereditary spastic paraplegia. J Neurol 251:1105–1110PubMed Proukakis C, Cross H, Patel H, Patton MA, Valentine A, Crosby AH (2004) Troyer syndrome revisited. A clinical and radiological study of a complicated hereditary spastic paraplegia. J Neurol 251:1105–1110PubMed
181.
Zurück zum Zitat Rainier S, Bui M, Mark E et al (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82:780–785PubMed Rainier S, Bui M, Mark E et al (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82:780–785PubMed
182.
Zurück zum Zitat Rainier S, Chai J-H, Tokarz D, Nicholls RD, Fink JK (2003) NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet 73:967–971PubMed Rainier S, Chai J-H, Tokarz D, Nicholls RD, Fink JK (2003) NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet 73:967–971PubMed
183.
Zurück zum Zitat Rainier S, Fink JK (2005) Hereditary spastic paraplegia: clinical features and animal models. In: Ledoux M (ed) Animal models of movement disorders. Elseivier Academic Press, New York, pp 687–690 Rainier S, Fink JK (2005) Hereditary spastic paraplegia: clinical features and animal models. In: Ledoux M (ed) Animal models of movement disorders. Elseivier Academic Press, New York, pp 687–690
184.
Zurück zum Zitat Rainier S, Sher C, Reish O, Thomas D, Fink JK (2006) De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch Neurol 63:445–447PubMed Rainier S, Sher C, Reish O, Thomas D, Fink JK (2006) De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch Neurol 63:445–447PubMed
185.
Zurück zum Zitat Raskind WH, Pericak-Vance MA, Lennon F, Wolff J, Lipe HP, Bird TD (1997) Familial spastic paraparesis: evaluation of locus heterogeneity, anticipation and haplotype mapping of the SPG4 locus on the short arm of chromosome 2. Am J Hum Genet 74:26–36 Raskind WH, Pericak-Vance MA, Lennon F, Wolff J, Lipe HP, Bird TD (1997) Familial spastic paraparesis: evaluation of locus heterogeneity, anticipation and haplotype mapping of the SPG4 locus on the short arm of chromosome 2. Am J Hum Genet 74:26–36
186.
Zurück zum Zitat Reddy PL, Seltzer WK, Grewal RP (2007) Possible anticipation in hereditary spastic paraplegia type 4 (SPG4). Can J Neurol Sci 34:208–210PubMed Reddy PL, Seltzer WK, Grewal RP (2007) Possible anticipation in hereditary spastic paraplegia type 4 (SPG4). Can J Neurol Sci 34:208–210PubMed
187.
Zurück zum Zitat Reid E, Connell J, Edwards S, Duley S, Brown SE, Sanderson CM (2005) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Gen 14:19–38PubMed Reid E, Connell J, Edwards S, Duley S, Brown SE, Sanderson CM (2005) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Gen 14:19–38PubMed
188.
Zurück zum Zitat Reid E, Dearlove AM, Osborn M, Rogers T, Rubinsztein DC (2000) A locus for autosomal dominant “Pure” hereditary spastic paraplegia maps to chromosome 19q13. Am J Hum Genet 66:728–732PubMed Reid E, Dearlove AM, Osborn M, Rogers T, Rubinsztein DC (2000) A locus for autosomal dominant “Pure” hereditary spastic paraplegia maps to chromosome 19q13. Am J Hum Genet 66:728–732PubMed
189.
Zurück zum Zitat Reid E, Dearlove AM, Rhodes M, Rubinsztein DC (1999) A new locus for autosomal dominant ‘pure’ hereditary spastic paraplegia mapping to chromosome 12q13 and evidence for further genetic heterogeneity. Am J Hum Genet 65:757–763PubMed Reid E, Dearlove AM, Rhodes M, Rubinsztein DC (1999) A new locus for autosomal dominant ‘pure’ hereditary spastic paraplegia mapping to chromosome 12q13 and evidence for further genetic heterogeneity. Am J Hum Genet 65:757–763PubMed
190.
Zurück zum Zitat Reid E, Grayson C, Rubinsztein DC, Rogers MT, Rubinsztein JS (1999) Subclinical cognitive impairment in autosomal dominant ‘pure’ hereditary spastic paraplegia. J Med Genet 36:797–798PubMed Reid E, Grayson C, Rubinsztein DC, Rogers MT, Rubinsztein JS (1999) Subclinical cognitive impairment in autosomal dominant ‘pure’ hereditary spastic paraplegia. J Med Genet 36:797–798PubMed
191.
Zurück zum Zitat Ribai P, Stevanin G, Bouslam N et al (2006) A new phenotype linked to SPG27 and refinement of the critical region on chromosome. J Neurol 253:714–719PubMed Ribai P, Stevanin G, Bouslam N et al (2006) A new phenotype linked to SPG27 and refinement of the critical region on chromosome. J Neurol 253:714–719PubMed
192.
Zurück zum Zitat Richardson RJ, Davis CS, Johnson MK (1979) Subcellular distribution of marker enzymes and of neurotoxic esterase in adult hen brain. J Neurochem 32:607–615PubMed Richardson RJ, Davis CS, Johnson MK (1979) Subcellular distribution of marker enzymes and of neurotoxic esterase in adult hen brain. J Neurochem 32:607–615PubMed
193.
Zurück zum Zitat Rismanchi N, Soderblom C, Stadler J, Zhu P–P, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Gen 17:1591–1604PubMed Rismanchi N, Soderblom C, Stadler J, Zhu P–P, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Gen 17:1591–1604PubMed
194.
Zurück zum Zitat Roll-Mecak A, Vale RD (2005) The drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol 15:650–655PubMed Roll-Mecak A, Vale RD (2005) The drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol 15:650–655PubMed
195.
Zurück zum Zitat Roll-Mecak A, Vale RD (2008) Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451:363–367PubMed Roll-Mecak A, Vale RD (2008) Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451:363–367PubMed
196.
Zurück zum Zitat Ropers F, Derivery E, Hu H et al (2011) Identification of a novel candidate gene for non-syndromic autosomal recessive intellectual disability: the WASH complex member SWIP. Hum Mol Genet 20:2585–2590PubMed Ropers F, Derivery E, Hu H et al (2011) Identification of a novel candidate gene for non-syndromic autosomal recessive intellectual disability: the WASH complex member SWIP. Hum Mol Genet 20:2585–2590PubMed
197.
Zurück zum Zitat Sack GH, Huether CA, Garg N (1978) Familial spastic paraplegia: clinical and pathologic studies in a large kindred. Johns Hopkins Med J 143:117–121PubMed Sack GH, Huether CA, Garg N (1978) Familial spastic paraplegia: clinical and pathologic studies in a large kindred. Johns Hopkins Med J 143:117–121PubMed
198.
Zurück zum Zitat Sanderson CM, Connell JW, Edwards TL et al (2006) Spastin and atlastin, two proteins mutated in autosomal dominant hereditary spastic paraplegia, are binding partners. Hum Mol Gen 15:307–318PubMed Sanderson CM, Connell JW, Edwards TL et al (2006) Spastin and atlastin, two proteins mutated in autosomal dominant hereditary spastic paraplegia, are binding partners. Hum Mol Gen 15:307–318PubMed
199.
Zurück zum Zitat Sargiannidou I, Markoullis K, Kleopa KA (2010) Molecular mechanisms of gap junction mutations in myelinating cells. Histol Histopathol 25:1191–1206PubMed Sargiannidou I, Markoullis K, Kleopa KA (2010) Molecular mechanisms of gap junction mutations in myelinating cells. Histol Histopathol 25:1191–1206PubMed
200.
Zurück zum Zitat Saugier-Veber P, Munnich A, Bonneau D et al (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet 6:257–262PubMed Saugier-Veber P, Munnich A, Bonneau D et al (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet 6:257–262PubMed
201.
Zurück zum Zitat Schlipf NA, Beetz C, Schule R et al (2010) A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42). Eur J Hum Genet 18:1065–1067PubMed Schlipf NA, Beetz C, Schule R et al (2010) A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42). Eur J Hum Genet 18:1065–1067PubMed
202.
Zurück zum Zitat Schule R, Bonin M, Durr A et al (2009) Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24. Neurology 72:1893–1898PubMed Schule R, Bonin M, Durr A et al (2009) Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24. Neurology 72:1893–1898PubMed
203.
Zurück zum Zitat Schuurs-Hoeijmakers J, Geraghty M, Kamsteeg EJ et al (2012) Mutations in DDHD2, encoding an intracellular phospholipase A1, cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 91:1073–1081PubMed Schuurs-Hoeijmakers J, Geraghty M, Kamsteeg EJ et al (2012) Mutations in DDHD2, encoding an intracellular phospholipase A1, cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 91:1073–1081PubMed
204.
Zurück zum Zitat Schwarz GA (1952) Hereditary (familial) spastic paraplegia. AMA Arch Neurol Psychiatry 68:655–682PubMed Schwarz GA (1952) Hereditary (familial) spastic paraplegia. AMA Arch Neurol Psychiatry 68:655–682PubMed
205.
Zurück zum Zitat Schwarz GA, Liu C-N (1956) Hereditary (familial) spastic paraplegia. Further clinical and pathologic observations. AMA Arch Neurol Psychiatry 75:144–162PubMed Schwarz GA, Liu C-N (1956) Hereditary (familial) spastic paraplegia. Further clinical and pathologic observations. AMA Arch Neurol Psychiatry 75:144–162PubMed
206.
Zurück zum Zitat Seri M, Cusano R, Forabosco P et al (1999) Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet 64:586–593PubMed Seri M, Cusano R, Forabosco P et al (1999) Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet 64:586–593PubMed
207.
Zurück zum Zitat Shimazaki H, Takiyama Y, Ishiura H et al (2012) A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet 49:777–784PubMed Shimazaki H, Takiyama Y, Ishiura H et al (2012) A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet 49:777–784PubMed
208.
Zurück zum Zitat Simpson MA, Cross H, Proukakis C et al (2003) Maspardin is mutated in Mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet 73:1147–1156PubMed Simpson MA, Cross H, Proukakis C et al (2003) Maspardin is mutated in Mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet 73:1147–1156PubMed
209.
Zurück zum Zitat Slabicki M, Theis M, Krastev DB et al (2010) A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 8:e1000408PubMed Slabicki M, Theis M, Krastev DB et al (2010) A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 8:e1000408PubMed
210.
Zurück zum Zitat Sperfeld AD, Baumgartner A, Kassubek J (2005) Magnetic resonance investigation of the upper spinal cord in pure and complicated hereditary spastic paraparesis. Eur Neurol 54:181–185PubMed Sperfeld AD, Baumgartner A, Kassubek J (2005) Magnetic resonance investigation of the upper spinal cord in pure and complicated hereditary spastic paraparesis. Eur Neurol 54:181–185PubMed
211.
Zurück zum Zitat Sporkrl O, Uschkureit T, Bussow H, Stoffel W (2002) Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37:19–30 Sporkrl O, Uschkureit T, Bussow H, Stoffel W (2002) Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37:19–30
212.
Zurück zum Zitat Steinmuller R, Lantingua-Cruz A, Carcia-Garcia R, Kostrzewa M, Steinberger D, Muller U (1997) Evidence of a third locus in X-linked recessive spastic paraplegia [letter]. Hum Genet 100:287–289PubMed Steinmuller R, Lantingua-Cruz A, Carcia-Garcia R, Kostrzewa M, Steinberger D, Muller U (1997) Evidence of a third locus in X-linked recessive spastic paraplegia [letter]. Hum Genet 100:287–289PubMed
213.
Zurück zum Zitat Stevanin G, Santorelli FM, Azzedine H et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nature Genet 39:366–372PubMed Stevanin G, Santorelli FM, Azzedine H et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nature Genet 39:366–372PubMed
214.
Zurück zum Zitat Subramony SH, Nguyen TV, Langford L, Lin X, Parent AD, Zhang J (2009) Identification of a new form of autosomal dominant spastic paraplegia. Clin Genet 76:113–116PubMed Subramony SH, Nguyen TV, Langford L, Lin X, Parent AD, Zhang J (2009) Identification of a new form of autosomal dominant spastic paraplegia. Clin Genet 76:113–116PubMed
215.
Zurück zum Zitat Suzuki SO, Iwaki T, Arakawa K, Furuya H, Fujii N, Iwaki A (2011) An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 122:755–781 Suzuki SO, Iwaki T, Arakawa K, Furuya H, Fujii N, Iwaki A (2011) An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 122:755–781
216.
Zurück zum Zitat Svenstrup K, Moller RS, Christensen J, Budtz-Jorgensen E, Gilling M, Nielsen JE (2013) NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy. Eur J Neurol 18:1197–1199 Svenstrup K, Moller RS, Christensen J, Budtz-Jorgensen E, Gilling M, Nielsen JE (2013) NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy. Eur J Neurol 18:1197–1199
217.
Zurück zum Zitat Tamagaki A, Shima M, Tomita R et al (2000) Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. Am J Med Genet 94:5–8PubMed Tamagaki A, Shima M, Tomita R et al (2000) Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. Am J Med Genet 94:5–8PubMed
218.
Zurück zum Zitat Tang BS, Chen X, Zhao GH et al (2004) Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases. Chin Med J (Engl) 117:1002–1005 Tang BS, Chen X, Zhao GH et al (2004) Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases. Chin Med J (Engl) 117:1002–1005
219.
Zurück zum Zitat Tesson C, Nawara M, Salih M et al (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064PubMed Tesson C, Nawara M, Salih M et al (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064PubMed
220.
Zurück zum Zitat Thomsen B, Nissen PH, Agerholm JS, Bendixen C (2010) Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene. Neurogenetics 11:175–183PubMed Thomsen B, Nissen PH, Agerholm JS, Bendixen C (2010) Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene. Neurogenetics 11:175–183PubMed
221.
Zurück zum Zitat Tsang HT, Edwards TL, Wang X et al (2009) The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet 18:3805–3821PubMed Tsang HT, Edwards TL, Wang X et al (2009) The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet 18:3805–3821PubMed
222.
Zurück zum Zitat Tsaousidou MK, Ouahchi K, Warner TT et al (2008) Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82:510–515PubMed Tsaousidou MK, Ouahchi K, Warner TT et al (2008) Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82:510–515PubMed
223.
Zurück zum Zitat Tuck RR, O’Neill BP, Gharib H, Mulder DW (1983) Familial spastic paraplegia with Kallmann’s syndrome. J Neurol, Neurosurg, Psych 46:671–674 Tuck RR, O’Neill BP, Gharib H, Mulder DW (1983) Familial spastic paraplegia with Kallmann’s syndrome. J Neurol, Neurosurg, Psych 46:671–674
224.
Zurück zum Zitat Uttner I, Baumgartner A, Sperfeld AD, Kassubek J (2007) Cognitive performance in pure and complicated hereditary spastic paraparesis: a neuropsychological and neuroimaging study. Neurosci Lett 419:158–161PubMed Uttner I, Baumgartner A, Sperfeld AD, Kassubek J (2007) Cognitive performance in pure and complicated hereditary spastic paraparesis: a neuropsychological and neuroimaging study. Neurosci Lett 419:158–161PubMed
225.
Zurück zum Zitat Valdmanis PN, Meijer IA, Reynolds A et al (2007) Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet 80:152–161PubMed Valdmanis PN, Meijer IA, Reynolds A et al (2007) Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet 80:152–161PubMed
226.
Zurück zum Zitat Valente EM, Brancati F, Caputo V, Patrono C, Costanti D, Dallapiccola B (2002) Novel locus for autosomal dominant pure heredtiary spastic paraplegia (SPG19) maps to chromosome 9q22-q34. Ann Neurol 51:681–685PubMed Valente EM, Brancati F, Caputo V, Patrono C, Costanti D, Dallapiccola B (2002) Novel locus for autosomal dominant pure heredtiary spastic paraplegia (SPG19) maps to chromosome 9q22-q34. Ann Neurol 51:681–685PubMed
227.
Zurück zum Zitat Vassilopoulos D, Spengos M, Zoumbou V, Scarpalezos S (1981) The spinal canal in famlial spastic paraplegia. Eur Neurol 20:110–114PubMed Vassilopoulos D, Spengos M, Zoumbou V, Scarpalezos S (1981) The spinal canal in famlial spastic paraplegia. Eur Neurol 20:110–114PubMed
228.
Zurück zum Zitat Vazza GZM, Boaretto F, Micaglio GF, Sartori V, Mostacciuolo ML (2000) A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy SPG14, maps to chromosome 3q27–q28. Am J Hum Genet 67:504–509PubMed Vazza GZM, Boaretto F, Micaglio GF, Sartori V, Mostacciuolo ML (2000) A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy SPG14, maps to chromosome 3q27–q28. Am J Hum Genet 67:504–509PubMed
229.
Zurück zum Zitat Verkerk AJ, Schot R, Dumee B et al (2009) Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 85:40–52PubMed Verkerk AJ, Schot R, Dumee B et al (2009) Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 85:40–52PubMed
230.
Zurück zum Zitat Verny C, Guegen N, Desquiret V et al (2011) Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion 11:70–75PubMed Verny C, Guegen N, Desquiret V et al (2011) Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion 11:70–75PubMed
231.
Zurück zum Zitat Vose SC, Fujioka K, Gulevich AG, Lin AY, Holland NT, Casida JE (2008) Cellular function of neuropathy target esterase in lysophosphatidylcholine action. Toxicol Appl Pharmacol 232:376–383PubMed Vose SC, Fujioka K, Gulevich AG, Lin AY, Holland NT, Casida JE (2008) Cellular function of neuropathy target esterase in lysophosphatidylcholine action. Toxicol Appl Pharmacol 232:376–383PubMed
232.
Zurück zum Zitat Wakabayashi K, Kobayashi H, Kawasaki S, Kondo H, Takahashi H (2001) Autosomal recessive spastic paraplegia with hypoplastic corpus callosum, multisystem degeneration and ubiquitinated eosinophilic granules. Acta Neuropathol 101:69–73PubMed Wakabayashi K, Kobayashi H, Kawasaki S, Kondo H, Takahashi H (2001) Autosomal recessive spastic paraplegia with hypoplastic corpus callosum, multisystem degeneration and ubiquitinated eosinophilic granules. Acta Neuropathol 101:69–73PubMed
233.
Zurück zum Zitat Wang G, Liu G, Wang X et al (2012) ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways. BMC Cancer 12:225PubMed Wang G, Liu G, Wang X et al (2012) ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways. BMC Cancer 12:225PubMed
234.
Zurück zum Zitat Warnecke T, Duning T, Schirmacher A et al (2010) A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects. Mov Disord 25:413–420PubMed Warnecke T, Duning T, Schirmacher A et al (2010) A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects. Mov Disord 25:413–420PubMed
235.
Zurück zum Zitat Webb S, Coleman D, Byrne P et al (1998) Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. Brain 121:601–609PubMed Webb S, Coleman D, Byrne P et al (1998) Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. Brain 121:601–609PubMed
236.
Zurück zum Zitat Wharton SB, McDermott CJ, Grierson AJ et al (2003) The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 62:1166–1177PubMed Wharton SB, McDermott CJ, Grierson AJ et al (2003) The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 62:1166–1177PubMed
237.
Zurück zum Zitat White KD, Ince PG, Lusher M et al (2000) Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology 55:89–94PubMed White KD, Ince PG, Lusher M et al (2000) Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology 55:89–94PubMed
238.
Zurück zum Zitat Wild NJ, Rosenbloom L (1986) Familial cerebral palsy associated with normal intelligence. Postgrad Med J 62:827–830PubMed Wild NJ, Rosenbloom L (1986) Familial cerebral palsy associated with normal intelligence. Postgrad Med J 62:827–830PubMed
239.
Zurück zum Zitat Wilkinson PA, Crosby AH, Turner C et al (2003) A clinical and genetic study of SPG5A linked autosomal recessive hereditary spastic paraplegia. Neurology 61:235–238PubMed Wilkinson PA, Crosby AH, Turner C et al (2003) A clinical and genetic study of SPG5A linked autosomal recessive hereditary spastic paraplegia. Neurology 61:235–238PubMed
240.
Zurück zum Zitat Wilkinson PA, Simpson MA, Bastaki L et al (2005) A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1–12q14. J Med Genet 42:80–82PubMed Wilkinson PA, Simpson MA, Bastaki L et al (2005) A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1–12q14. J Med Genet 42:80–82PubMed
241.
Zurück zum Zitat Windpassinger C, Auer-Grumbach M, Irobi J et al (2004) Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 36:271–276PubMed Windpassinger C, Auer-Grumbach M, Irobi J et al (2004) Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 36:271–276PubMed
242.
Zurück zum Zitat Winner B, Uyanik G, Gross C et al (2004) Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol 61:117–121PubMed Winner B, Uyanik G, Gross C et al (2004) Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol 61:117–121PubMed
243.
Zurück zum Zitat Winrow CJ, Hemming ML, Allen DM, Quistad GB, Casida JE, Barlow C (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nature Genet 33:477–485PubMed Winrow CJ, Hemming ML, Allen DM, Quistad GB, Casida JE, Barlow C (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nature Genet 33:477–485PubMed
244.
Zurück zum Zitat Woehrer A, Laszlo L, Finsterer J et al (2012) Novel crystalloid oligodendrogliopathy in hereditary spastic paraplegia. Acta Neuropathol 124:583–591PubMed Woehrer A, Laszlo L, Finsterer J et al (2012) Novel crystalloid oligodendrogliopathy in hereditary spastic paraplegia. Acta Neuropathol 124:583–591PubMed
245.
Zurück zum Zitat Xia CH, Roberts EA, Her LS et al (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain K1F5A. J Cell Biol 161:55–66PubMed Xia CH, Roberts EA, Her LS et al (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain K1F5A. J Cell Biol 161:55–66PubMed
246.
Zurück zum Zitat Yamashita A, Kumazawa T, Koga H, Suzuki N, Oka S, Sugiura T (2010) Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochimica et Biophysica Acta (BBA)—Mol Cell Biol Lipids 1801:711–720 Yamashita A, Kumazawa T, Koga H, Suzuki N, Oka S, Sugiura T (2010) Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochimica et Biophysica Acta (BBA)—Mol Cell Biol Lipids 1801:711–720
247.
Zurück zum Zitat Zaccheo O, Dinsdale D, Meacock PA, Glynn P (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Bio Chem 279:24024–24033 Zaccheo O, Dinsdale D, Meacock PA, Glynn P (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Bio Chem 279:24024–24033
248.
Zurück zum Zitat Zhang L (2010) CRASH syndrome: does it teach us about neurotrophic functions of cell adhesion molecules? Neuroscientist 16:470–474PubMed Zhang L (2010) CRASH syndrome: does it teach us about neurotrophic functions of cell adhesion molecules? Neuroscientist 16:470–474PubMed
249.
Zurück zum Zitat Zhao GH, Hu ZM, Shen L et al (2008) A novel candidate locus on chromosome 11p14.1-p11.2 for autosomal dominant hereditary spastic paraplegia. Chin Med J (Engl) 121:430–434 Zhao GH, Hu ZM, Shen L et al (2008) A novel candidate locus on chromosome 11p14.1-p11.2 for autosomal dominant hereditary spastic paraplegia. Chin Med J (Engl) 121:430–434
250.
Zurück zum Zitat Zhao J, Matthies DS, Botzolakis EJ, Macdonald RL, Blakely RD, Hedera P (2008) Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J Neurosci 28:13938–13951PubMed Zhao J, Matthies DS, Botzolakis EJ, Macdonald RL, Blakely RD, Hedera P (2008) Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J Neurosci 28:13938–13951PubMed
251.
Zurück zum Zitat Zhao X, Alvarado D, Rainier S et al (2001) Mutations in a novel GTPase cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29:326–331PubMed Zhao X, Alvarado D, Rainier S et al (2001) Mutations in a novel GTPase cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29:326–331PubMed
252.
Zurück zum Zitat Zhu PP, Soderblom C, Tao-Cheng J-H, Stadler J, Blackstone C (2006) SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Human Mol Gen 15:1343–1353 Zhu PP, Soderblom C, Tao-Cheng J-H, Stadler J, Blackstone C (2006) SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Human Mol Gen 15:1343–1353
253.
Zurück zum Zitat Zivony-Elboum Y, Westbroek W, Kfir N et al (2012) A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet 49:462–472PubMed Zivony-Elboum Y, Westbroek W, Kfir N et al (2012) A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet 49:462–472PubMed
254.
Zurück zum Zitat Zortea M, Vettori A, Trevisan CP et al (2002) Genetic mapping of a susceptibility locus for disc herniation and spastic paraplegia on 6q23.3-q24.1. J Med Genet 39:387–390PubMed Zortea M, Vettori A, Trevisan CP et al (2002) Genetic mapping of a susceptibility locus for disc herniation and spastic paraplegia on 6q23.3-q24.1. J Med Genet 39:387–390PubMed
255.
Zurück zum Zitat Zuchner S, Kail ME, Nance M et al (2006) A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7:127–129PubMed Zuchner S, Kail ME, Nance M et al (2006) A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7:127–129PubMed
256.
Zurück zum Zitat Zuchner S, Wang G, Tran-Viet KN et al (2006) Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 79:365–369PubMed Zuchner S, Wang G, Tran-Viet KN et al (2006) Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 79:365–369PubMed
Metadaten
Titel
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms
verfasst von
John K. Fink
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 3/2013
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-013-1115-8

Weitere Artikel der Ausgabe 3/2013

Acta Neuropathologica 3/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.