Skip to main content
Erschienen in: Acta Neuropathologica 3/2014

01.03.2014 | Original Paper

Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD)

verfasst von: Johannes Brettschneider, Kelly Del Tredici, David J. Irwin, Murray Grossman, John L. Robinson, Jon B. Toledo, Lubin Fang, Vivianna M. Van Deerlin, Albert C. Ludolph, Virginia M.-Y. Lee, Heiko Braak, John Q. Trojanowski

Erschienen in: Acta Neuropathologica | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

We examined regional distribution patterns of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in frontotemporal lobar degeneration (FTLD). Immunohistochemistry was performed on 70 μm sections from FTLD-TDP autopsy cases (n = 39) presenting with behavioral variant frontotemporal dementia. Two main types of cortical pTDP-43 pathology emerged, characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD). Cortical involvement in nFTLD was extensive and frequently reached occipital areas, whereas cases with cFTLD often involved bulbar somatomotor neurons and the spinal cord. We observed four patterns indicative of potentially sequential dissemination of pTDP-43: cases with the lowest burden of pathology (pattern I) were characterized by widespread pTDP-43 lesions in the orbital gyri, gyrus rectus, and amygdala. With increasing burden of pathology (pattern II) pTDP-43 lesions emerged in the middle frontal and anterior cingulate gyrus as well as in anteromedial temporal lobe areas, the superior and medial temporal gyri, striatum, red nucleus, thalamus, and precerebellar nuclei. More advanced cases showed a third pattern (III) with involvement of the motor cortex, bulbar somatomotor neurons, and the spinal cord anterior horn, whereas cases with the highest burden of pathology (pattern IV) were characterized by pTDP-43 lesions in the visual cortex. We interpret the four neuropathological patterns in bvFTD to be consistent with the hypothesis that pTDP-43 pathology can spread sequentially and may propagate along axonal pathways.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Armstrong MJ, Litvan I, Lang AE et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503PubMedCentralPubMed Armstrong MJ, Litvan I, Lang AE et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503PubMedCentralPubMed
2.
Zurück zum Zitat Armstrong RA, Carter D, Cairns NJ (2012) A quantitative study of the neuropathology of 32 sporadic and familial cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neuropathol Appl Neurobiol 38:25–38PubMedCentralPubMed Armstrong RA, Carter D, Cairns NJ (2012) A quantitative study of the neuropathology of 32 sporadic and familial cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neuropathol Appl Neurobiol 38:25–38PubMedCentralPubMed
3.
Zurück zum Zitat Barbas H (2007) Specialized elements of orbitofrontal cortex in primates. Ann N Y Acad Sci 1121:10–32PubMed Barbas H (2007) Specialized elements of orbitofrontal cortex in primates. Ann N Y Acad Sci 1121:10–32PubMed
4.
Zurück zum Zitat Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571PubMed Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571PubMed
5.
Zurück zum Zitat Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313:65–94PubMed Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313:65–94PubMed
6.
Zurück zum Zitat Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375PubMed Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375PubMed
7.
Zurück zum Zitat Barnes J, Whitwell JL, Frost C et al (2006) Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 63:1434–1439PubMed Barnes J, Whitwell JL, Frost C et al (2006) Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 63:1434–1439PubMed
8.
Zurück zum Zitat Basar K, Sesia T, Groenewegen H et al (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557PubMed Basar K, Sesia T, Groenewegen H et al (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557PubMed
9.
Zurück zum Zitat Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404PubMedCentralPubMed Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404PubMedCentralPubMed
10.
Zurück zum Zitat Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMed Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMed
11.
Zurück zum Zitat Braak H, Brettschneider J, Ludolph A et al (2013) Amyotrophic lateral sclerosis: a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714PubMedCentralPubMed Braak H, Brettschneider J, Ludolph A et al (2013) Amyotrophic lateral sclerosis: a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714PubMedCentralPubMed
12.
Zurück zum Zitat Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMed Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMed
13.
Zurück zum Zitat Braak H, Rüb U, Del Tredici K (2003) Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 29:60–76PubMed Braak H, Rüb U, Del Tredici K (2003) Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 29:60–76PubMed
14.
Zurück zum Zitat Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38PubMedCentralPubMed Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38PubMedCentralPubMed
15.
Zurück zum Zitat Brettschneider J, Libon DJ, Toledo JB et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123:395–407PubMedCentralPubMed Brettschneider J, Libon DJ, Toledo JB et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123:395–407PubMedCentralPubMed
16.
Zurück zum Zitat Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839PubMedCentralPubMed Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839PubMedCentralPubMed
17.
Zurück zum Zitat Broe M, Hodges JR, Schofield E et al (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011PubMed Broe M, Hodges JR, Schofield E et al (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011PubMed
18.
Zurück zum Zitat Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol 114:5–22PubMedCentralPubMed Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol 114:5–22PubMedCentralPubMed
19.
Zurück zum Zitat Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedCentralPubMed Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedCentralPubMed
21.
Zurück zum Zitat De Leon MJ, Convit A, George AE et al (1996) In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer’s disease. Ann N Y Acad Sci 777:1–13PubMed De Leon MJ, Convit A, George AE et al (1996) In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer’s disease. Ann N Y Acad Sci 777:1–13PubMed
22.
Zurück zum Zitat Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCentralPubMed Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCentralPubMed
23.
Zurück zum Zitat Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157PubMed Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157PubMed
24.
Zurück zum Zitat Duda JE, Giasson BI, Mabon ME et al (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52:205–210PubMed Duda JE, Giasson BI, Mabon ME et al (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52:205–210PubMed
25.
Zurück zum Zitat Fang PC, Stepniewska I, Kaas JH (2005) Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti. J Comp Neurol 490:305–333PubMed Fang PC, Stepniewska I, Kaas JH (2005) Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti. J Comp Neurol 490:305–333PubMed
26.
Zurück zum Zitat Feldengut S, Del Tredici K, Braak H (2013) Paraffin sections of 70–100mum: a novel technique and its benefits for studying the nervous system. J Neurosci Methods 215:241–244PubMed Feldengut S, Del Tredici K, Braak H (2013) Paraffin sections of 70–100mum: a novel technique and its benefits for studying the nervous system. J Neurosci Methods 215:241–244PubMed
27.
Zurück zum Zitat Folstein MF, Folstein SE, Mchugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMed Folstein MF, Folstein SE, Mchugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMed
28.
Zurück zum Zitat Forman MS, Farmer J, Johnson JK et al (2006) Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59:952–962PubMedCentralPubMed Forman MS, Farmer J, Johnson JK et al (2006) Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59:952–962PubMedCentralPubMed
29.
Zurück zum Zitat Furukawa Y, Kaneko K, Watanabe S et al (2011) A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem 286:18664–18672PubMedCentralPubMed Furukawa Y, Kaneko K, Watanabe S et al (2011) A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem 286:18664–18672PubMedCentralPubMed
30.
Zurück zum Zitat Gambetti P, Cali I, Notari S et al (2011) Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol 121:79–90PubMedCentralPubMed Gambetti P, Cali I, Notari S et al (2011) Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol 121:79–90PubMedCentralPubMed
31.
Zurück zum Zitat Garibotto V, Borroni B, Agosti C et al (2011) Subcortical and deep cortical atrophy in frontotemporal lobar degeneration. Neurobiol Aging 32:875–884PubMed Garibotto V, Borroni B, Agosti C et al (2011) Subcortical and deep cortical atrophy in frontotemporal lobar degeneration. Neurobiol Aging 32:875–884PubMed
32.
Zurück zum Zitat Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641PubMed Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641PubMed
33.
Zurück zum Zitat Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189PubMedCentralPubMed Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189PubMedCentralPubMed
34.
Zurück zum Zitat Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34:905–923PubMedCentralPubMed Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34:905–923PubMedCentralPubMed
35.
Zurück zum Zitat Giannakopoulos P, Hof PR, Bouras C (1995) Dementia lacking distinctive histopathology: clinicopathological evaluation of 32 cases. Acta Neuropathol 89:346–355PubMed Giannakopoulos P, Hof PR, Bouras C (1995) Dementia lacking distinctive histopathology: clinicopathological evaluation of 32 cases. Acta Neuropathol 89:346–355PubMed
36.
Zurück zum Zitat Gordon E, Rohrer JD, Kim LG et al (2010) Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology 74:666–673PubMedCentralPubMed Gordon E, Rohrer JD, Kim LG et al (2010) Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology 74:666–673PubMedCentralPubMed
37.
Zurück zum Zitat Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014PubMedCentralPubMed Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014PubMedCentralPubMed
38.
Zurück zum Zitat Grossman M (2010) Primary progressive aphasia: clinicopathological correlations, nature reviews. Neurology 6:88–97PubMedCentralPubMed Grossman M (2010) Primary progressive aphasia: clinicopathological correlations, nature reviews. Neurology 6:88–97PubMedCentralPubMed
39.
Zurück zum Zitat Guo JL, Covell DJ, Daniels JP et al (2013) Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117PubMed Guo JL, Covell DJ, Daniels JP et al (2013) Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117PubMed
40.
Zurück zum Zitat Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330PubMed Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330PubMed
41.
Zurück zum Zitat Hornberger M, Geng J, Hodges JR (2011) Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain J Neurol 134:2502–2512 Hornberger M, Geng J, Hodges JR (2011) Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain J Neurol 134:2502–2512
42.
Zurück zum Zitat Hornberger M, Savage S, Hsieh S et al (2010) Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer’s disease. Dement Geriatr Cogn Disord 30:547–552PubMed Hornberger M, Savage S, Hsieh S et al (2010) Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer’s disease. Dement Geriatr Cogn Disord 30:547–552PubMed
43.
Zurück zum Zitat Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794PubMedCentralPubMed Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794PubMedCentralPubMed
44.
Zurück zum Zitat Josephs KA, Murray ME, Whitwell JL et al (2013) Staging TDP-43 pathology in Alzheimer’s disease. Acta neuropathologica [Epub ahead of print] Josephs KA, Murray ME, Whitwell JL et al (2013) Staging TDP-43 pathology in Alzheimer’s disease. Acta neuropathologica [Epub ahead of print]
45.
Zurück zum Zitat Josephs KA, Stroh A, Dugger B et al (2009) Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathol 118:349–358PubMedCentralPubMed Josephs KA, Stroh A, Dugger B et al (2009) Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathol 118:349–358PubMedCentralPubMed
46.
Zurück zum Zitat Josephs KA, Whitwell JL, Murray ME et al (2013) Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia. Brain J Neurol 136:455–470 Josephs KA, Whitwell JL, Murray ME et al (2013) Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia. Brain J Neurol 136:455–470
47.
Zurück zum Zitat Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51PubMedCentralPubMed Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51PubMedCentralPubMed
48.
Zurück zum Zitat Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 83:739–745PubMedCentralPubMed Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 83:739–745PubMedCentralPubMed
49.
Zurück zum Zitat Kaplan E, Goodglass H, Weintraub S (eds) (2001) Boston naming test. Lippincott Williams and Wilins, Philadelphia Kaplan E, Goodglass H, Weintraub S (eds) (2001) Boston naming test. Lippincott Williams and Wilins, Philadelphia
50.
Zurück zum Zitat Kersaitis C, Halliday GM, Kril JJ (2004) Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathol 108:515–523PubMed Kersaitis C, Halliday GM, Kril JJ (2004) Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathol 108:515–523PubMed
51.
Zurück zum Zitat Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955PubMed Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955PubMed
52.
Zurück zum Zitat Kril JJ, Halliday GM (2004) Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dement Geriatr Cogn Disord 17:311–315PubMed Kril JJ, Halliday GM (2004) Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dement Geriatr Cogn Disord 17:311–315PubMed
53.
Zurück zum Zitat Kril JJ, Halliday GM (2011) Pathological staging of frontotemporal lobar degeneration. J Mol Neurosci 45:379–383PubMed Kril JJ, Halliday GM (2011) Pathological staging of frontotemporal lobar degeneration. J Mol Neurosci 45:379–383PubMed
54.
Zurück zum Zitat Kril JJ, Macdonald V, Patel S et al (2005) Distribution of brain atrophy in behavioral variant frontotemporal dementia. J Neurol Sci 232:83–90PubMed Kril JJ, Macdonald V, Patel S et al (2005) Distribution of brain atrophy in behavioral variant frontotemporal dementia. J Neurol Sci 232:83–90PubMed
55.
Zurück zum Zitat Krueger CE, Dean DL, Rosen HJ et al (2010) Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Dis Assoc Disord 24:43–48PubMedCentralPubMed Krueger CE, Dean DL, Rosen HJ et al (2010) Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Dis Assoc Disord 24:43–48PubMedCentralPubMed
56.
Zurück zum Zitat Kumfor F, Irish M, Hodges JR et al (2013) The orbitofrontal cortex is involved in emotional enhancement of memory: evidence from the dementias. Brain 136:2992–3003PubMed Kumfor F, Irish M, Hodges JR et al (2013) The orbitofrontal cortex is involved in emotional enhancement of memory: evidence from the dementias. Brain 136:2992–3003PubMed
57.
Zurück zum Zitat Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50 Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50
58.
Zurück zum Zitat Lee EB, Leng LZ, Zhang B et al (2006) Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 281:4292–4299PubMed Lee EB, Leng LZ, Zhang B et al (2006) Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 281:4292–4299PubMed
59.
Zurück zum Zitat Lezak M (1983) Neuropsychological assessment. Oxford University Press, New York Lezak M (1983) Neuropsychological assessment. Oxford University Press, New York
60.
Zurück zum Zitat Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503PubMed Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503PubMed
61.
Zurück zum Zitat Lillo P, Garcin B, Hornberger M et al (2010) Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Arch Neurol 67:826–830PubMed Lillo P, Garcin B, Hornberger M et al (2010) Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Arch Neurol 67:826–830PubMed
62.
Zurück zum Zitat Lillo P, Mioshi E, Burrell JR et al (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS ONE 7:e43993PubMedCentralPubMed Lillo P, Mioshi E, Burrell JR et al (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS ONE 7:e43993PubMedCentralPubMed
63.
Zurück zum Zitat Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438PubMedCentralPubMed Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438PubMedCentralPubMed
64.
Zurück zum Zitat Liu W, Miller BL, Kramer JH et al (2004) Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology 62:742–748PubMedCentralPubMed Liu W, Miller BL, Kramer JH et al (2004) Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology 62:742–748PubMedCentralPubMed
65.
Zurück zum Zitat Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079PubMed Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079PubMed
66.
Zurück zum Zitat Lu MT, Preston JB, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392PubMed Lu MT, Preston JB, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392PubMed
67.
Zurück zum Zitat Luk KC, Kehm VM, Zhang B et al (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986PubMedCentralPubMed Luk KC, Kehm VM, Zhang B et al (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986PubMedCentralPubMed
68.
Zurück zum Zitat Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113PubMedCentralPubMed Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113PubMedCentralPubMed
69.
Zurück zum Zitat Mackenzie IR, Neumann M, Bigio EH et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18PubMedCentralPubMed Mackenzie IR, Neumann M, Bigio EH et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18PubMedCentralPubMed
70.
Zurück zum Zitat Mann DM, South PW (1993) The topographic distribution of brain atrophy in frontal lobe dementia. Acta Neuropathol 85:334–340PubMed Mann DM, South PW (1993) The topographic distribution of brain atrophy in frontal lobe dementia. Acta Neuropathol 85:334–340PubMed
71.
Zurück zum Zitat Mckhann GM, Albert MS, Grossman M et al (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809PubMed Mckhann GM, Albert MS, Grossman M et al (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809PubMed
72.
Zurück zum Zitat Mioshi E, Hsieh S, Savage S et al (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74:1591–1597PubMed Mioshi E, Hsieh S, Savage S et al (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74:1591–1597PubMed
73.
Zurück zum Zitat Mougenot AL, Nicot S, Bencsik A et al (2011) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228PubMed Mougenot AL, Nicot S, Bencsik A et al (2011) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228PubMed
74.
Zurück zum Zitat Munoz-Ruiz MA, Hartikainen P, Koikkalainen J et al (2012) Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PLoS ONE 7:e52531PubMedCentralPubMed Munoz-Ruiz MA, Hartikainen P, Koikkalainen J et al (2012) Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PLoS ONE 7:e52531PubMedCentralPubMed
75.
Zurück zum Zitat Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149PubMedCentralPubMed Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149PubMedCentralPubMed
76.
Zurück zum Zitat Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMed Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMed
77.
Zurück zum Zitat Nishihira Y, Tan CF, Toyoshima Y et al (2009) Sporadic amyotrophic lateral sclerosis: widespread multisystem degeneration with TDP-43 pathology in a patient after long-term survival on a respirator. Neuropathology 29:689–696PubMed Nishihira Y, Tan CF, Toyoshima Y et al (2009) Sporadic amyotrophic lateral sclerosis: widespread multisystem degeneration with TDP-43 pathology in a patient after long-term survival on a respirator. Neuropathology 29:689–696PubMed
78.
Zurück zum Zitat Nonaka T, Masuda-Suzukake M, Arai T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134PubMed Nonaka T, Masuda-Suzukake M, Arai T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134PubMed
79.
Zurück zum Zitat O’Callaghan C, Bertoux M, Hornberger M (2013) Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry [Epub ahead of print] O’Callaghan C, Bertoux M, Hornberger M (2013) Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry [Epub ahead of print]
80.
Zurück zum Zitat Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain J Neurol 127:2657–2671 Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain J Neurol 127:2657–2671
81.
Zurück zum Zitat Perry RJ, Graham A, Williams G et al (2006) Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord 22:278–287PubMed Perry RJ, Graham A, Williams G et al (2006) Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord 22:278–287PubMed
82.
Zurück zum Zitat Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003PubMed Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003PubMed
83.
Zurück zum Zitat Piguet O, Hornberger M, Mioshi E et al (2011) Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 10:162–172PubMed Piguet O, Hornberger M, Mioshi E et al (2011) Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 10:162–172PubMed
84.
Zurück zum Zitat Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893PubMedCentralPubMed Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893PubMedCentralPubMed
85.
Zurück zum Zitat Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508PubMedCentralPubMed Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508PubMedCentralPubMed
86.
Zurück zum Zitat Porrino LJ, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198:121–136PubMed Porrino LJ, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198:121–136PubMed
87.
Zurück zum Zitat Rabinovici GD, Seeley WW, Kim EJ et al (2007) Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 22:474–488PubMedCentralPubMed Rabinovici GD, Seeley WW, Kim EJ et al (2007) Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 22:474–488PubMedCentralPubMed
88.
Zurück zum Zitat Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477PubMedCentralPubMed Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477PubMedCentralPubMed
89.
Zurück zum Zitat Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811PubMedCentralPubMed Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811PubMedCentralPubMed
90.
Zurück zum Zitat Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11:760–772PubMedCentralPubMed Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11:760–772PubMedCentralPubMed
91.
Zurück zum Zitat Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865PubMed Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865PubMed
92.
Zurück zum Zitat Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCentralPubMed Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCentralPubMed
93.
Zurück zum Zitat Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMed Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMed
94.
Zurück zum Zitat Rohrer JD, Geser F, Zhou J et al (2010) TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75:2204–2211PubMedCentralPubMed Rohrer JD, Geser F, Zhou J et al (2010) TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75:2204–2211PubMedCentralPubMed
95.
Zurück zum Zitat Rosso SM, Donker Kaat L, Baks T et al (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016–2022PubMed Rosso SM, Donker Kaat L, Baks T et al (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016–2022PubMed
96.
Zurück zum Zitat Safar J, Cohen FE, Prusiner SB (2000) Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Archiv Virol 227–235 Safar J, Cohen FE, Prusiner SB (2000) Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Archiv Virol 227–235
97.
Zurück zum Zitat Seelaar H, Rohrer JD, Pijnenburg YA et al (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82:476–486PubMed Seelaar H, Rohrer JD, Pijnenburg YA et al (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82:476–486PubMed
98.
Zurück zum Zitat Snowden JS, Rollinson S, Thompson JC et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708PubMedCentralPubMed Snowden JS, Rollinson S, Thompson JC et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708PubMedCentralPubMed
99.
Zurück zum Zitat Snowden JS, Thompson JC, Stopford CL et al (2011) The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain 134:2478–2492PubMed Snowden JS, Thompson JC, Stopford CL et al (2011) The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain 134:2478–2492PubMed
100.
Zurück zum Zitat Tartaglia MC, Zhang Y, Racine C et al (2012) Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J Neurol 259:1071–1080PubMedCentralPubMed Tartaglia MC, Zhang Y, Racine C et al (2012) Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J Neurol 259:1071–1080PubMedCentralPubMed
101.
Zurück zum Zitat The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418 The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418
103.
Zurück zum Zitat Van De Pol LA, Hensel A, Van Der Flier WM et al (2006) Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:439–442PubMedCentralPubMed Van De Pol LA, Hensel A, Van Der Flier WM et al (2006) Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:439–442PubMedCentralPubMed
104.
Zurück zum Zitat Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71PubMedCentralPubMed Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71PubMedCentralPubMed
105.
Zurück zum Zitat Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381PubMed Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381PubMed
106.
Zurück zum Zitat Whitwell JL, Jack CR Jr, Parisi JE et al (2011) Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci 45:372–378PubMedCentralPubMed Whitwell JL, Jack CR Jr, Parisi JE et al (2011) Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci 45:372–378PubMedCentralPubMed
107.
Zurück zum Zitat Whitwell JL, Sampson EL, Watt HC et al (2005) A volumetric magnetic resonance imaging study of the amygdala in frontotemporal lobar degeneration and Alzheimer’s disease. Dement Geriatr Cogn Disord 20:238–244PubMed Whitwell JL, Sampson EL, Watt HC et al (2005) A volumetric magnetic resonance imaging study of the amygdala in frontotemporal lobar degeneration and Alzheimer’s disease. Dement Geriatr Cogn Disord 20:238–244PubMed
108.
Zurück zum Zitat Wu CW, Bichot NP, Kaas JH (2000) Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. J Comp Neurol 423:140–177PubMed Wu CW, Bichot NP, Kaas JH (2000) Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. J Comp Neurol 423:140–177PubMed
109.
Zurück zum Zitat Xie SX, Baek Y, Grossman M et al (2011) Building an integrated neurodegenerative disease database at an academic health center. Alzheimers Dement 7:e84–e93PubMedCentralPubMed Xie SX, Baek Y, Grossman M et al (2011) Building an integrated neurodegenerative disease database at an academic health center. Alzheimers Dement 7:e84–e93PubMedCentralPubMed
110.
Zurück zum Zitat Yakovlev PI (1948) Motility, behavior and the brain; stereodynamic organization and neural coordinates of behavior. J Nerv Ment Dis 107:313–335PubMed Yakovlev PI (1948) Motility, behavior and the brain; stereodynamic organization and neural coordinates of behavior. J Nerv Ment Dis 107:313–335PubMed
111.
Zurück zum Zitat Yu CE, Bird TD, Bekris LM et al (2010) The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 67:161–170PubMedCentralPubMed Yu CE, Bird TD, Bekris LM et al (2010) The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 67:161–170PubMedCentralPubMed
Metadaten
Titel
Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD)
verfasst von
Johannes Brettschneider
Kelly Del Tredici
David J. Irwin
Murray Grossman
John L. Robinson
Jon B. Toledo
Lubin Fang
Vivianna M. Van Deerlin
Albert C. Ludolph
Virginia M.-Y. Lee
Heiko Braak
John Q. Trojanowski
Publikationsdatum
01.03.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 3/2014
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-013-1238-y

Weitere Artikel der Ausgabe 3/2014

Acta Neuropathologica 3/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.