Skip to main content
Erschienen in: Acta Neuropathologica 4/2014

01.04.2014 | Original Paper

Impairment of in vivo calcium signaling in amyloid plaque-associated microglia

verfasst von: Bianca Brawek, Bernd Schwendele, Karin Riester, Shinichi Kohsaka, Chommanad Lerdkrai, Yajie Liang, Olga Garaschuk

Erschienen in: Acta Neuropathologica | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Neuroinflammation is a hallmark of Alzheimer’s disease (AD) both in man and in multiple mouse models, and epidemiological studies link the use of anti-inflammatory drugs with a reduced risk of developing the disease. AD-related neuroinflammation is largely mediated by microglia, the main immune cells of the central nervous system. In vitro, executive functions of microglia are regulated by intracellular Ca2+ signals, but little is known about microglial Ca2+ signaling in vivo. Here we analyze in vivo properties of these cells in two mouse models of AD. In both strains plaque-associated microglia had hypertrophic/amoeboid morphology and were strongly positive for markers of activation such as CD11b and CD68. Activated microglia failed to respond reliably to extracellular release of adenosine triphosphate (ATP, mimicking tissue damage) and showed an increased incidence of spontaneous intracellular Ca2+ transients. These Ca2+ transients required activation of ATP receptors and Ca2+ release from the intracellular Ca2+ stores, and were not induced by neuronal or astrocytic hyperactivity. Neuronal silencing, however, selectively increased the frequency of Ca2+ transients in plaque-associated microglia. Thus, our in vivo data reveal substantial dysfunction of plaque-associated microglia and identify a novel Ca2+ signal possibly triggering a Ca2+-dependent release of toxic species in the plaque vicinity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30(1):81–93CrossRefPubMed Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30(1):81–93CrossRefPubMed
2.
Zurück zum Zitat Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744CrossRefPubMed Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744CrossRefPubMed
3.
Zurück zum Zitat Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602CrossRefPubMed Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602CrossRefPubMed
4.
Zurück zum Zitat Bornemann KD, Wiederhold KH, Pauli C et al (2001) Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am J Pathol 158(1):63–73PubMedCentralCrossRefPubMed Bornemann KD, Wiederhold KH, Pauli C et al (2001) Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am J Pathol 158(1):63–73PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590CrossRefPubMed Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590CrossRefPubMed
6.
Zurück zum Zitat Busche MA, Eichhoff G, Adelsberger H et al (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896):1686–1689CrossRefPubMed Busche MA, Eichhoff G, Adelsberger H et al (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896):1686–1689CrossRefPubMed
7.
Zurück zum Zitat Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90CrossRefPubMed Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90CrossRefPubMed
8.
Zurück zum Zitat Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758CrossRefPubMed Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758CrossRefPubMed
9.
Zurück zum Zitat Del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. Hoeber, New York, pp 482–534 Del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. Hoeber, New York, pp 482–534
10.
Zurück zum Zitat Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta Mol Cell Res 1813:1014–1024CrossRef Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta Mol Cell Res 1813:1014–1024CrossRef
11.
Zurück zum Zitat Eichhoff G, Busche MA, Garaschuk O (2008) In vivo calcium imaging of the aging and diseased brain. Eur J Nucl Med Mol Imaging 35(Suppl 1):S99–S106CrossRefPubMed Eichhoff G, Busche MA, Garaschuk O (2008) In vivo calcium imaging of the aging and diseased brain. Eur J Nucl Med Mol Imaging 35(Suppl 1):S99–S106CrossRefPubMed
12.
Zurück zum Zitat Eikelenboom P, Bate C, Van Gool WA et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239CrossRefPubMed Eikelenboom P, Bate C, Van Gool WA et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239CrossRefPubMed
13.
Zurück zum Zitat Eikelenboom P, van Exel E, Hoozemans JJ et al (2010) Neuroinflammation: an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegenerative Dis 7(1–3):38–41CrossRef Eikelenboom P, van Exel E, Hoozemans JJ et al (2010) Neuroinflammation: an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegenerative Dis 7(1–3):38–41CrossRef
14.
Zurück zum Zitat Färber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48(2):133–143CrossRefPubMed Färber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48(2):133–143CrossRefPubMed
15.
Zurück zum Zitat Färber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54(7):656–665CrossRefPubMed Färber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54(7):656–665CrossRefPubMed
16.
Zurück zum Zitat Felderhoff-Mueser U, Schmidt OI, Oberholzer A, Buhrer C, Stahel PF (2005) IL-18: a key player in neuroinflammation and neurodegeneration? Trends Neurosci 28(9):487–493CrossRefPubMed Felderhoff-Mueser U, Schmidt OI, Oberholzer A, Buhrer C, Stahel PF (2005) IL-18: a key player in neuroinflammation and neurodegeneration? Trends Neurosci 28(9):487–493CrossRefPubMed
17.
Zurück zum Zitat Garaschuk O (2013) Imaging microcircuit function in healthy and diseased brain. Exp Neurol 242:41–49CrossRefPubMed Garaschuk O (2013) Imaging microcircuit function in healthy and diseased brain. Exp Neurol 242:41–49CrossRefPubMed
18.
Zurück zum Zitat Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386CrossRefPubMed Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386CrossRefPubMed
19.
21.
Zurück zum Zitat Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394CrossRefPubMed Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394CrossRefPubMed
22.
Zurück zum Zitat Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678CrossRefPubMed Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678CrossRefPubMed
23.
Zurück zum Zitat Hermes M, Eichhoff G, Garaschuk O (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14(1–2):30–41CrossRefPubMed Hermes M, Eichhoff G, Garaschuk O (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14(1–2):30–41CrossRefPubMed
24.
Zurück zum Zitat Hide I, Tanaka M, Inoue A et al (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75(3):965–972CrossRefPubMed Hide I, Tanaka M, Inoue A et al (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75(3):965–972CrossRefPubMed
25.
Zurück zum Zitat Hirasawa T, Ohsawa K, Imai Y et al (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81(3):357–362CrossRefPubMed Hirasawa T, Ohsawa K, Imai Y et al (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81(3):357–362CrossRefPubMed
27.
Zurück zum Zitat Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23(11):4410–4419PubMed Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23(11):4410–4419PubMed
28.
Zurück zum Zitat Ikeda M, Tsuno S, Sugiyama T et al (2013) Ca2+ spiking activity caused by the activation of store-operated Ca2+ channels mediates TNF-alpha release from microglial cells under chronic purinergic stimulation. Biochim Biophys Acta 1833(12):2573–2585CrossRefPubMed Ikeda M, Tsuno S, Sugiyama T et al (2013) Ca2+ spiking activity caused by the activation of store-operated Ca2+ channels mediates TNF-alpha release from microglial cells under chronic purinergic stimulation. Biochim Biophys Acta 1833(12):2573–2585CrossRefPubMed
29.
Zurück zum Zitat Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 181(10):7254–7262PubMedCentralPubMed Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 181(10):7254–7262PubMedCentralPubMed
30.
Zurück zum Zitat Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116PubMedCentralCrossRefPubMed Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114PubMedCentralCrossRefPubMed Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553CrossRefPubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553CrossRefPubMed
33.
Zurück zum Zitat Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106(10):4012–4017PubMedCentralCrossRefPubMed Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106(10):4012–4017PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K et al (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095PubMedCentralCrossRefPubMed Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K et al (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Krabbe G, Halle A, Matyash V et al (2013) Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE 8(4):e60921PubMedCentralCrossRefPubMed Krabbe G, Halle A, Matyash V et al (2013) Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE 8(4):e60921PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Kuchibhotla KV, Goldman ST, Lattarulo CR et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2):214–225PubMedCentralCrossRefPubMed Kuchibhotla KV, Goldman ST, Lattarulo CR et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2):214–225PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215PubMedCentralCrossRefPubMed Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Lee GS, Subramanian N, Kim AI et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492(7427):123–127CrossRefPubMed Lee GS, Subramanian N, Kim AI et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492(7427):123–127CrossRefPubMed
39.
Zurück zum Zitat McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126:479–497CrossRefPubMed McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126:479–497CrossRefPubMed
40.
Zurück zum Zitat Murakami T, Ockinger J, Yu J et al (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109(28):11282–11287PubMedCentralCrossRefPubMed Murakami T, Ockinger J, Yu J et al (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109(28):11282–11287PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477CrossRefPubMed Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477CrossRefPubMed
42.
Zurück zum Zitat Radde R, Bolmont T, Kaeser SA et al (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7(9):940–946PubMedCentralCrossRefPubMed Radde R, Bolmont T, Kaeser SA et al (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7(9):940–946PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492PubMed Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492PubMed
44.
Zurück zum Zitat Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefPubMed Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefPubMed
45.
Zurück zum Zitat Rodgers KM, Hutchinson MR, Northcutt A et al (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132(Pt 9):2478–2486PubMedCentralCrossRefPubMed Rodgers KM, Hutchinson MR, Northcutt A et al (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132(Pt 9):2478–2486PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Schwendele B, Brawek B, Hermes M, Garaschuk O (2012) High resolution in vivo imaging of microglia using a versatile non genetically-encoded marker. Eur J Immunol 42(8):2193–2196CrossRefPubMed Schwendele B, Brawek B, Hermes M, Garaschuk O (2012) High resolution in vivo imaging of microglia using a versatile non genetically-encoded marker. Eur J Immunol 42(8):2193–2196CrossRefPubMed
47.
Zurück zum Zitat Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264(30):17816–17823PubMed Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264(30):17816–17823PubMed
48.
Zurück zum Zitat Spires TL, Meyer-Luehmann M, Stern EA et al (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25(31):7278–7287PubMedCentralCrossRefPubMed Spires TL, Meyer-Luehmann M, Stern EA et al (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25(31):7278–7287PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324PubMedCentralCrossRefPubMed Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Wang X, Lou N, Xu Q et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823CrossRefPubMed Wang X, Lou N, Xu Q et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823CrossRefPubMed
51.
Zurück zum Zitat Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 24(7):1190–1201PubMedCentralCrossRefPubMed Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 24(7):1190–1201PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harbor Perspect Med 2(1):a006346CrossRef Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harbor Perspect Med 2(1):a006346CrossRef
53.
Zurück zum Zitat Zhang B, Gaiteri C, Bodea LG et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720CrossRefPubMed Zhang B, Gaiteri C, Bodea LG et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720CrossRefPubMed
Metadaten
Titel
Impairment of in vivo calcium signaling in amyloid plaque-associated microglia
verfasst von
Bianca Brawek
Bernd Schwendele
Karin Riester
Shinichi Kohsaka
Chommanad Lerdkrai
Yajie Liang
Olga Garaschuk
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 4/2014
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-013-1242-2

Weitere Artikel der Ausgabe 4/2014

Acta Neuropathologica 4/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.