Skip to main content

Advertisement

Log in

Human pontine glioma cells can induce murine tumors

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop preclinical models of DIPG, two different methods were adopted: cells obtained at autopsy (1) were directly xenografted orthotopically into the pons of immunodeficient mice without an intervening cell culture step or (2) were first cultured in vitro and, upon successful expansion, injected in vivo. Both strategies resulted in pontine tumors histopathologically similar to the original human DIPG tumors. However, following the direct transplantation method all tumors proved to be composed of murine and not of human cells. This is in contrast to the indirect method that included initial in vitro culture and resulted in xenografts comprising human cells. Of note, direct injection of cells obtained postmortem from the pons and frontal lobe of human brains not affected by cancer did not give rise to neoplasms. The murine pontine tumors exhibited an immunophenotype similar to human DIPG, but were also positive for microglia/macrophage markers, such as CD45, CD68 and CD11b. Serial orthotopic injection of these murine cells results in lethal tumors in recipient mice. Direct injection of human DIPG cells in vivo can give rise to malignant murine tumors. This represents an important caveat for xenotransplantation models of DIPG. In contrast, an initial in vitro culture step can allow establishment of human orthotopic xenografts. The mechanism underlying this phenomenon observed with direct xenotransplantation remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barrow J, Adamowicz-Brice M, Cartmill M, MacArthur D, Lowe J, Robson K, Brundler M, Walker DA, Coyle B, Grundy R (2011) Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol 13:212–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Beattie GM, Knowles AF, Jensen FC, Baird SM, Kaplan NO (1982) Induction of sarcomas in athymic mice. Proc Natl Acad Sci USA 79:3033–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, Kool M, Zapatka M, Northcott PA, Sturm D, Wang W, Radlwimmer B, Højfeldt JW, Truffaux N, Castel D, Schubert S, Ryzhova M, Seker-Cin H, Gronych J, Johann PD, Stark S, Meyer J, Milde T, Schuhmann M, Ebinger M, Monoranu C, Ponnuswami A, Chen S, Jones C, Witt O, Collins VP, von Deimling A, Jabado N, Puget S, Grill J, Helin K, Korshunov A, Lichter P, Monje M, Plass C, Cho Y, Pfister SM (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672

    Article  CAS  PubMed  Google Scholar 

  4. Bugiani M, Boor I, van Kollenburg B, Postma N, Polder E, van Berkel C, van Kesteren RE, Windrem MS, Hol EM, Scheper GC, Goldman SA, van der Knaap MS (2011) Defective glial maturation in vanishing white matter disease. J Neuropathol Exp Neurol 70:69–82

    Article  PubMed  Google Scholar 

  5. Carertti V, Bugiani M, Boor I, Schellen P, Vandertop WP, Noske DP, Kaspers GL, Wurdinger T, Wesseling P (2012) Histopathological heterogeneity in diffuse intrinsic pontine glioma. In: 15th international symposium on pediatric neuro-oncology. http://neuro-oncology.oxfordjournals.org/content/14/suppl_1/i43.abstract?sid=e116a32e-27ef-4d4f-84ba-571a58f1e56f

  6. Caretti V (2012) Pioneering preclinical research in diffuse intrinsic pontine glioma: towards new treatment strategies. Ipskamp Drukkers, Amsterdam

    Google Scholar 

  7. Caretti V, Jansen MHA, van Vuurden DG, Lagerweij T, Bugiani M, Horsman I, Wessels H, van der Valk P, Cloos J, Noske DP, Vandertop WP, Wesseling P, Wurdinger T, Hulleman E, Kaspers GJL (2012) Implementation of a multi-institutional diffuse intrinsic pontine glioma autopsy protocol and characterization of a primary cell culture. Neuropathol Appl Neurobiol 39:426–436

    Article  Google Scholar 

  8. Caretti V, Zondervan I, Meijer DH, Idema S, Vos W, Hamans B, Bugiani M, Hulleman E, Wesseling P, Vandertop WP, Noske DP, Kaspers G, Molthoff CFM, Wurdinger T (2011) Monitoring of tumor growth and post-irradiation recurrence in a diffuse intrinsic pontine glioma mouse model. Brain Pathol 21:441–451

    Article  PubMed  Google Scholar 

  9. Chen EH, Olson EN (2005) Unveiling the mechanisms of cell–cell fusion. Science 308:369–373

    Article  CAS  PubMed  Google Scholar 

  10. Donaldson SS, Laningham F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24:1266–1272

    Article  CAS  PubMed  Google Scholar 

  11. Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7:968–976

    Article  CAS  PubMed  Google Scholar 

  12. Fisher PG, Breiter SN, Carson BS, Wharam MD, Williams JA, Weingart JD, Foer DR, Goldthwaite PT, Tihan T, Burger PC (2000) A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer 89:1569–1576

    Article  CAS  PubMed  Google Scholar 

  13. Goldenberg DM, Bhan RD, Pavia RA (1971) In vivo human–hamster somatic cell fusion indicated by glucose 6-phosphate dehydrogenase and lactate dehydrogenase profiles. Cancer Res 31:1148–1152

    CAS  PubMed  Google Scholar 

  14. Goldenberg DM, Gold DV, Loo M, Liu D, Chang C, Jaffe ES (2013) Horizontal transmission of malignancy: in vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology. PLoS One 8:e55324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Goldenberg DM, Pavia RA (1981) Malignant potential of murine stromal cells after transplantation of human tumors into nude mice. Science 212:65–67

    Article  CAS  PubMed  Google Scholar 

  16. Goldenberg DM, Pavia RA, Tsao MC (1974) In vivo hybridisation of human tumour and normal hamster cells. Nature 250:649–651

    Article  CAS  PubMed  Google Scholar 

  17. Goldenberg DM, Zagzag D, Heselmeyer-Haddad KM, Berroa Garcia LY, Ried T, Loo M, Chang C, Gold DV (2011) Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo. Int J Cancer 131:49–58

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gupta V, Rajaraman S, Gadson P, Costanzi JJ (1987) Primary transfection as a mechanism for transformation of host cells by human tumor cells implanted in nude mice. Cancer Res 47:5194–5201

    CAS  PubMed  Google Scholar 

  19. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7:241–248

    Article  PubMed  Google Scholar 

  20. Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ (2003) Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells 21:405–416

    Article  PubMed  Google Scholar 

  21. Huysentruyt LC, Akgoc Z, Seyfried TN (2011) Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? ASN Neurol epii:e00064

  22. Jansen MHA, van Vuurden DG, Vandertop WP, Kaspers GJL (2012) Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev 38:27–35

    Article  CAS  PubMed  Google Scholar 

  23. Khuong-Quang D, Buczkowicz P, Rakopoulos P, Liu X, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Krijgsman O, Israeli D, Haan JC, van Essen HF, Smeets SJ, Eijk PP, Steenbergen RD, Kok K, Tejpar S, Meijer GA, Ylstra B (2012) CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes Chromosom Cancer 51:344–352

    Article  CAS  PubMed  Google Scholar 

  25. Levy A, Blacher E, Vaknine H, Lund FE, Stein R, Mayo L (2012) CD38 deficiency in the tumor microenvironment attenuates glioma progression and modulates features of tumor-associated microglia/macrophages. Neurol Oncol 14:1037–1049

    Article  CAS  Google Scholar 

  26. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu X, Kang Y (2009) Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA–MB-231 variants. Proc Natl Acad Sci USA 106:9385–9390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mammolenti M, Gajavelli S, Tsoulfas P, Levy R (2004) Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymphocytes in vitro. Stem Cells 22:1101–1110

    Article  CAS  PubMed  Google Scholar 

  29. Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H (2011) Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25:624–628

    Article  CAS  PubMed  Google Scholar 

  30. Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, Attema JL, Li G, Haddix T, Edwards MSB, Fisher PG, Weissman IL, Rowitch DH, Vogel H, Wong AJ, Beachy PA (2011) Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci USA 108:4453–4458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Naundorf H, Fichtner I, Elbe B, Saul GJ, Haensch W, Zschiesche W, Reinecke S (1994) Establishment and characteristics of two new human mammary carcinoma lines in nude mice with special reference to the estradiol receptor status and the importance of stroma for in vivo and in vitro growth. Breast Cancer Res Treat 32:187–196

    Article  CAS  PubMed  Google Scholar 

  32. Ogle BM, Butters KA, Plummer TB, Ring KR, Knudsen BE, Litzow MR, Cascalho M, Platt JL (2004) Spontaneous fusion of cells between species yields transdifferentiation and retroviral transfer in vivo. FASEB J 18:548–550

    CAS  PubMed  Google Scholar 

  33. Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575

    Article  CAS  PubMed  Google Scholar 

  34. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, Olson JM, Geyer JR, Chi SN, da Silva NS, Onar-Thomas A, Baker JN, Gajjar A, Ellison DW, Baker SJ (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29:3999–4006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, Bax DA, Coyle B, Barrow J, Hargrave D, Lowe J, Gajjar A, Zhao W, Broniscer A, Ellison DW, Grundy RG, Baker SJ (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28:3061–3068

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pawelek JM, Chakraborty AK (2008) The cancer cell–leukocyte fusion theory of metastasis. Adv Cancer Res 101:397–444

    Article  CAS  PubMed  Google Scholar 

  37. Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH (2013) Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann Neurol 73:303–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Press CSHL (2005) Fluorescence in situ hybridization. Nat Methods 2:237–238

    Article  Google Scholar 

  39. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    Article  CAS  PubMed  Google Scholar 

  40. Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–293

    Article  CAS  PubMed  Google Scholar 

  41. Russell PJ, Brown J, Grimmond S, Stapleton P, Russell P, Raghavan D, Symonds G (1990) Tumour-induced host stromal-cell transformation: induction of mouse spindle-cell fibrosarcoma not mediated by gene transfer. Int J Cancer 46:299–309

    Article  CAS  PubMed  Google Scholar 

  42. Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, Hall J, Raabe EH, An P, Weingart M, Rood BR, Magge SN, Macdonald TJ, Packer RJ, Nazarian J (2013) Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. doi:10.1007/s00401-013-1218-2

  43. Schwartzentruber J, Korshunov A, Liu X, Jones DTW, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DK, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  44. Sethi R, Allen J, Donahue B, Karajannis M, Gardner S, Wisoff J, Kunnakkat S, Mathew J, Zagzag D, Newman K, Narayana A (2010) Prospective neuraxis MRI surveillance reveals a high risk of leptomeningeal dissemination in diffuse intrinsic pontine glioma. J Neurooncol 99:1–7

    Article  Google Scholar 

  45. Soranzo C, Ingrosso A, Pratesi G, Lombardi L, Pilotti S, Zunino F (1989) Malignant transformation of host cells by a human small cell lung cancer xenografted into nude mice. Anticancer Res 9:361–366

    CAS  PubMed  Google Scholar 

  46. Sparrow S, Jones M, Billington S, Stace B (1986) The in vivo malignant transformation of mouse fibroblasts in the presence of human tumour xenografts. Br J Cancer 53:793–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin M, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE (2010) Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 5:e9832

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sturm D, Witt H, Hovestadt V, Khuong-Quang D, Jones DTW, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu X, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Frühwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  50. Todaro GJ, Fryling C, De Larco JE (1980) Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 77:5258–5262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wakasugi H, Koyama K, Gyotoku M, Yoshimoto M, Hirohashi S, Sugimura T, Terada M (1995) Frequent development of murine T-cell lymphomas with TcR alpha/beta+, CD4-/8-phenotype after implantation of human inflammatory breast cancer cells in BALB/c nude mice. Jpn J Cancer Res 86:1086–1096

    Article  CAS  PubMed  Google Scholar 

  52. Wei J, Gabrusiewicz K, Heimberger A (2013) The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013:285246

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Yoshimura J, Onda K, Tanaka R, Takahashi H (2003) Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir 43:375–382

    Article  Google Scholar 

  55. Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, Hawkins C (2010) Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28:1337–1344

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and families who so generously donated tissue for this research. We sincerely thank the architect and artist Alessandra Luoni for drawing Fig. 1a. We gracefully acknowledge Alyssa Noll (Departments of Neurology and Pediatrics) for support with animal experiments, and Patty Lovelace (FACS Core) for her expertise with flow cytometry experiments; all from Stanford, USA. The flow cytometer used was purchased using an NIH S10 Shared Instrumentation Grant (1S10RR02933801). We are thankful to Jacqueline Cloos (Department of Pediatric Oncology, VU University Medical Center, The Netherlands) and Dana Bangs (Cytogenetics Laboratory, Stanford, USA) for their mastery in analyzing metaphase spreads. We are also thankful to Sridevi Yadavilli for processing postmortem specimens and assisting in murine injections, Research Center for Genetic Medicine, Children’s National Medical Center, Washington, USA. This work was supported by the Semmy Foundation, KiKa Children Cancer Free, Child Health Research Institute, Lucile Packard Foundation for Children’s Health, as well as the Stanford CTSA—award number UL1 TR000093—(V.C.), Stanford University School of Medicine Dean’s Fellowship (V.C.), National Institutes of Neurological Disease and Stroke (NINDS grant K08NS070926), Alex’s Lemonade Stand Foundation, McKenna Claire Foundation, The Cure Starts Now, Lyla Nsouli Foundation, Connor Johnson Memorial Fund, Dylan Jewett Memorial Fund, Dylan Frick Memorial Fund, Abigail Jensen Memorial Fund, Zoey Ganesh Memorial Fund, Wayland Villars Memorial Fund and Musella Foundation.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viola Caretti, Esther Hulleman, Michelle Monje or Thomas Wurdinger.

Additional information

E. Hulleman, M. Monje and T. Wurdinger contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2014_1272_MOESM1_ESM.pptx

Supplementary material 1 Supplementary Fig. 1 Histopathological characterization of human and murine VU-DIPG-3 and -5. H&E images of a, b h-VU-DIPG-3, c, d h-VU-DIPG-5, eh m-VU-DIPG-3 (transplant generations 3–10, except h = transplant generation 1) and il m-VU-DIPG-5 (transplant generations 3–10, except k = transplant generation 1). High magnification image of small cell phenotype in (a, d) h-VU-DIPG-3 and -5 and in (e, j) the correspondent m-VU-DIPG-3 and -5. b, f Numerous tumor cells surrounding the tunica adventitia in h-VU-DIPG-3 and m-VU-DIPG-3. The arrow in figure b indicates a fibrin aggregate. c, f and i Leptomeningeal spread in h-VU-DIPG-5 and in m-VU-DIPG-3 and -5. The arrow in figure c points at a leptomeningeal artery presenting thick walls. Note the tumor front invading the surrounding brain parenchyma in figure i. d, g, l Tumor cells clustered around vessels in h-VU-DIPG-3 and m-VU-DIPG-3 and -5. Arrows indicate perivascular growth. g Murine intraparencymal tumors presented areas of more compact growth (asterisk) along with diffuse growth after the first two transplant generation. h Perineuronal satellistosis, the arrow points at the neuronal cell body. k m-VU-DIPG-5 invading the skull bone. Scale bars a, c, d, e, g, h, I and j 10 μm; b 100 μm; f, k and l 20 μm. Supplementary Fig. 2 Metaphase spreads in murine pontine tumors and h-SU-DIPG-VI. a Murine VU-DIPG-3 abnormal metaphase with 41 chromosomes including an apparent dicentric chromosome (arrow). b Murine VU-DIPG-5 polyploid metaphase with 80 chromosomes including two centric fusion chromosomes (arrows). c Murine CNMC-D1 diploid metaphase and d grossly abnormal metaphase. e Human SU-DIPG-VI (in vitro passage 10) tetraploid metaphase spread with arrows indicating some of the abnormal chromosomes present. Murine VU-DIPG-3 and -5 cells were obtained from subcutaneous tumors at transplant generation 3–10; m-CNMC-D1 cells were obtained form pontine xenograft (transplant generation 1) and cultured in vitro for eight passages. Supplementary Fig. 3 Murine array-comparative genomic hybridization raw data. Fluorescent image of m-VU-DIPG-3 hybridized with m-DNA CTRL on (a) a human platform and on (b) a murine platform. Supplementary Table 1 Clinical characteristics of subjects whose DIPG tumors were evaluated for microglia/macrophage markers. WHO refers to World Health Organization and GBM refers to glioblastoma multiforme (grade IV). The clinical characteristics for SU-DIPG-VI are reported in Table 1. Supplementary Table 2 Primer sequences. The following primer was used for sequencing the murine H3F3A region of interest: AGATACATGTGTTCACAAAC. Supplementary Table 3 Human SU-DIPG-VI Control Cortex DNA Short Tandem Repeat (STR) fingerprint (PPTX 7102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caretti, V., Sewing, A.C.P., Lagerweij, T. et al. Human pontine glioma cells can induce murine tumors. Acta Neuropathol 127, 897–909 (2014). https://doi.org/10.1007/s00401-014-1272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1272-4

Keywords

Navigation