Skip to main content
Erschienen in: European Archives of Oto-Rhino-Laryngology 12/2017

19.09.2017 | Review Article

3D printing for clinical application in otorhinolaryngology

verfasst von: Nongping Zhong, Xia Zhao

Erschienen in: European Archives of Oto-Rhino-Laryngology | Ausgabe 12/2017

Einloggen, um Zugang zu erhalten

Abstract

Three-dimensional (3D) printing is a promising technology that can use a patient’s image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.
Literatur
1.
Zurück zum Zitat Hull CW iU, Inc, assignee (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 11 Hull CW iU, Inc, assignee (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 11
3.
Zurück zum Zitat Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341. doi:10.1007/s11548-010-0476-x PubMedCrossRef Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341. doi:10.​1007/​s11548-010-0476-x PubMedCrossRef
8.
Zurück zum Zitat Marconi S, Pugliese L, Botti M, Peri A, Cavazzi E, Latteri S, Auricchio F, Pietrabissa A (2017) Value of 3D printing for the comprehension of surgical anatomy. Surg Endosc. doi:10.1007/s00464-017-5457-5 PubMed Marconi S, Pugliese L, Botti M, Peri A, Cavazzi E, Latteri S, Auricchio F, Pietrabissa A (2017) Value of 3D printing for the comprehension of surgical anatomy. Surg Endosc. doi:10.​1007/​s00464-017-5457-5 PubMed
9.
Zurück zum Zitat Zuniga JM, Carson AM, Peck JM, Kalina T, Srivastava RM, Peck K (2017) The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet Orthot Int 41(2):205–209. doi:10.1177/030936461664 PubMedCrossRef Zuniga JM, Carson AM, Peck JM, Kalina T, Srivastava RM, Peck K (2017) The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet Orthot Int 41(2):205–209. doi:10.​1177/​030936461664 PubMedCrossRef
10.
15.
Zurück zum Zitat AlReefi MA, Nguyen LH, Mongeau LG, Haq BU, Boyanapalli S, Hafeez N, Cegarra-Escolano F, Tewfik MA (2016) Development and validation of a septoplasty training model using 3-dimensional printing technology. Int Forum Allergy Rhinol. doi:10.1002/alr.21887 PubMed AlReefi MA, Nguyen LH, Mongeau LG, Haq BU, Boyanapalli S, Hafeez N, Cegarra-Escolano F, Tewfik MA (2016) Development and validation of a septoplasty training model using 3-dimensional printing technology. Int Forum Allergy Rhinol. doi:10.​1002/​alr.​21887 PubMed
17.
23.
24.
Zurück zum Zitat Vorwerk U, Begall K (1998) Practice surgery on the artificial temporal bone. Development of temporal bone facsimiles with stereolithography. HNO 46(3):246–251PubMedCrossRef Vorwerk U, Begall K (1998) Practice surgery on the artificial temporal bone. Development of temporal bone facsimiles with stereolithography. HNO 46(3):246–251PubMedCrossRef
25.
Zurück zum Zitat Suzuki M, Ogawa Y, Kawano A, Hagiwara A, Yamaguchi H, Ono H (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124(4):400–402PubMedCrossRef Suzuki M, Ogawa Y, Kawano A, Hagiwara A, Yamaguchi H, Ono H (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124(4):400–402PubMedCrossRef
27.
Zurück zum Zitat Wulf J, Rohde L, Koppe T, Winder RJ (2012) Three-dimensional micro-imaging (μCT) based physical anatomic teaching models: implementation of a new learning aid for routine use in anatomy lectures. Stud Health Technol Inf 173:549–551 Wulf J, Rohde L, Koppe T, Winder RJ (2012) Three-dimensional micro-imaging (μCT) based physical anatomic teaching models: implementation of a new learning aid for routine use in anatomy lectures. Stud Health Technol Inf 173:549–551
31.
Zurück zum Zitat Hochman JB, Rhodes C, Wong D, Kraut J, Pisa J, Unger B (2015) Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education. Laryngoscope 125(10):2353–2357. doi:10.1002/lary.24919 PubMedCrossRef Hochman JB, Rhodes C, Wong D, Kraut J, Pisa J, Unger B (2015) Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education. Laryngoscope 125(10):2353–2357. doi:10.​1002/​lary.​24919 PubMedCrossRef
34.
Zurück zum Zitat Wanibuchi M, Noshiro S, Sugino T, Akiyama Y, Mikami T, Iihoshi S, Miyata K, Komatsu K, Mikuni N (2016) Training for skull base surgery with a colored temporal bone model created by three-dimensional printing technology. World Neurosurg 91:66–72. doi:10.1016/j.wneu.2016.03.084 PubMedCrossRef Wanibuchi M, Noshiro S, Sugino T, Akiyama Y, Mikami T, Iihoshi S, Miyata K, Komatsu K, Mikuni N (2016) Training for skull base surgery with a colored temporal bone model created by three-dimensional printing technology. World Neurosurg 91:66–72. doi:10.​1016/​j.​wneu.​2016.​03.​084 PubMedCrossRef
35.
Zurück zum Zitat Berens AM, Newman S, Bhrany AD, Murakami C, Sie KC, Zopf DA (2016) Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction. Otolaryngol Head Neck Surg 155(2):356–359. doi:10.1177/0194599816639586 PubMedCrossRef Berens AM, Newman S, Bhrany AD, Murakami C, Sie KC, Zopf DA (2016) Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction. Otolaryngol Head Neck Surg 155(2):356–359. doi:10.​1177/​0194599816639586​ PubMedCrossRef
36.
Zurück zum Zitat Alrasheed AS, Nguyen LHP, Mongeau L, Funnell WRJ, Tewfik MA (2017) Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. Int Forum Allergy Rhinol 7(8):837–841. doi:10.1002/alr.21960 PubMedCrossRef Alrasheed AS, Nguyen LHP, Mongeau L, Funnell WRJ, Tewfik MA (2017) Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. Int Forum Allergy Rhinol 7(8):837–841. doi:10.​1002/​alr.​21960 PubMedCrossRef
37.
Zurück zum Zitat Chang DR, Lin RP, Bowe S, Bunegin L, Weitzel EK, McMains KC, Willson T, Chen PG (2017) Fabircation and validation of a low-cost, medium-fidelity silicone injection molded endoscopic sinus surgery simulation model. Laryngoscope 127(4):781–786. doi:10.1002/lary.26370 PubMedCrossRef Chang DR, Lin RP, Bowe S, Bunegin L, Weitzel EK, McMains KC, Willson T, Chen PG (2017) Fabircation and validation of a low-cost, medium-fidelity silicone injection molded endoscopic sinus surgery simulation model. Laryngoscope 127(4):781–786. doi:10.​1002/​lary.​26370 PubMedCrossRef
38.
Zurück zum Zitat Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, Shih AJ, Rooney DM (2016) A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124(3):811–816. doi:10.3171/2015.3.JNS1552 PubMedCrossRef Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, Shih AJ, Rooney DM (2016) A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124(3):811–816. doi:10.​3171/​2015.​3.​JNS1552 PubMedCrossRef
39.
Zurück zum Zitat Sander IM, Liepert TT, Doney EL, Leevy WM, Liepert DR (2017) Patient education for endoscopic sinus surgery: preliminary experience using 3D-printed clinical imaging data. J Funct Biomater 8(2):E13. doi:10.3390/jfb8020013 PubMedCrossRef Sander IM, Liepert TT, Doney EL, Leevy WM, Liepert DR (2017) Patient education for endoscopic sinus surgery: preliminary experience using 3D-printed clinical imaging data. J Funct Biomater 8(2):E13. doi:10.​3390/​jfb8020013 PubMedCrossRef
40.
Zurück zum Zitat Chiesa Estomba CM, González Fernández I, Iglesias Otero MÁ (2016) How we do it: anterior and posterior nosebleed trainer, the 3D printing epistaxis project. Clin Otolaryngol. doi:10.1111/coa.12711 PubMed Chiesa Estomba CM, González Fernández I, Iglesias Otero MÁ (2016) How we do it: anterior and posterior nosebleed trainer, the 3D printing epistaxis project. Clin Otolaryngol. doi:10.​1111/​coa.​12711 PubMed
41.
Zurück zum Zitat Danti S, D’Alessandro D, Pietrabissa A, Petrini M, Berrettini S (2009) Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. J Biomed Mater Res A 92(4):1343–1356. doi:10.1002/jbm.a.32447 Danti S, D’Alessandro D, Pietrabissa A, Petrini M, Berrettini S (2009) Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. J Biomed Mater Res A 92(4):1343–1356. doi:10.​1002/​jbm.​a.​32447
42.
Zurück zum Zitat Martin AD, Harner SG (2004) Ossicular reconstruction with titanium prosthesis. Laryngoscope 114(1):61–64PubMedCrossRef Martin AD, Harner SG (2004) Ossicular reconstruction with titanium prosthesis. Laryngoscope 114(1):61–64PubMedCrossRef
44.
Zurück zum Zitat Goldenberg RA, Driver M (2000) Long-term results with hydroxylapatite middle ear implants. Otolaryngol Head Neck Surg 122(5):635–642PubMed Goldenberg RA, Driver M (2000) Long-term results with hydroxylapatite middle ear implants. Otolaryngol Head Neck Surg 122(5):635–642PubMed
45.
Zurück zum Zitat Xiong Y, Chen P, Sun J (2012) Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique. J Biomed Eng 29(2):247–250 (article in Chinese) Xiong Y, Chen P, Sun J (2012) Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique. J Biomed Eng 29(2):247–250 (article in Chinese)
46.
Zurück zum Zitat Li XS, Sun JJ, Jiang W, Liu X (2009) Effect on cochlea function by tissue-engineering osside prosthets containing controlled release bone morphogenetic protein 2 transplanted into acoustic build in guinea pig. Chin J Otorhinolaryngol Head Neck Surg 44(6):490–493 (article in Chinese) Li XS, Sun JJ, Jiang W, Liu X (2009) Effect on cochlea function by tissue-engineering osside prosthets containing controlled release bone morphogenetic protein 2 transplanted into acoustic build in guinea pig. Chin J Otorhinolaryngol Head Neck Surg 44(6):490–493 (article in Chinese)
47.
Zurück zum Zitat Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26(1):127–134. doi:10.1634/stemcells.2007-0520 PubMedCrossRef Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26(1):127–134. doi:10.​1634/​stemcells.​2007-0520 PubMedCrossRef
48.
Zurück zum Zitat Sandström C (2015) Adopting 3D printing for manufacturing-evidence from the hearing aid industry. Technol Forecast Soc Change 102:160–168CrossRef Sandström C (2015) Adopting 3D printing for manufacturing-evidence from the hearing aid industry. Technol Forecast Soc Change 102:160–168CrossRef
50.
Zurück zum Zitat Bos EJ, Scholten T, Song Y, Verlinden JC, Wolff J, Forouzanfar T, Helder MN, van Zuijlen P (2015) Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants. J Craniomaxillofac Surg 43(3):390–395. doi:10.1016/j.jcms.2014.12.016 PubMedCrossRef Bos EJ, Scholten T, Song Y, Verlinden JC, Wolff J, Forouzanfar T, Helder MN, van Zuijlen P (2015) Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants. J Craniomaxillofac Surg 43(3):390–395. doi:10.​1016/​j.​jcms.​2014.​12.​016 PubMedCrossRef
52.
Zurück zum Zitat Zopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ (2015) Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 152(1):57–62. doi:10.1177/0194599814552065 PubMedCrossRef Zopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ (2015) Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 152(1):57–62. doi:10.​1177/​0194599814552065​ PubMedCrossRef
53.
Zurück zum Zitat Suaste-Gómez E, Rodríguez-Roldán G, Reyes-Cruz H, Terán-Jiménez O (2016) Developing an ear prosthesis fabricated in polyvinylidene fluoride by a 3D printer with sensory intrinsic properties of pressure and temperature. Sensors 16(3):332. doi:10.3390/s16030332 PubMedCentralCrossRef Suaste-Gómez E, Rodríguez-Roldán G, Reyes-Cruz H, Terán-Jiménez O (2016) Developing an ear prosthesis fabricated in polyvinylidene fluoride by a 3D printer with sensory intrinsic properties of pressure and temperature. Sensors 16(3):332. doi:10.​3390/​s16030332 PubMedCentralCrossRef
56.
Zurück zum Zitat Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44. doi:10.1089/ten.TEC.2011.0060 PubMedCrossRef Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44. doi:10.​1089/​ten.​TEC.​2011.​0060 PubMedCrossRef
57.
Zurück zum Zitat Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. doi:10.1021/acs.biomac.5b00188 PubMedCrossRef Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. doi:10.​1021/​acs.​biomac.​5b00188 PubMedCrossRef
58.
Zurück zum Zitat Park JY, Choi YJ, Shim JH, Park JH, Cho DW (2017) Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33639 Park JY, Choi YJ, Shim JH, Park JH, Cho DW (2017) Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater. doi:10.​1002/​jbm.​b.​33639
60.
Zurück zum Zitat Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639PubMedPubMedCentralCrossRef Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Boedts D, De Cock M, Andries L, Marquet J (1990) A scanning electron-microscopic study of different tympanic grafts. Am J Otol 11(4):274–277PubMedCrossRef Boedts D, De Cock M, Andries L, Marquet J (1990) A scanning electron-microscopic study of different tympanic grafts. Am J Otol 11(4):274–277PubMedCrossRef
63.
Zurück zum Zitat Kozin ED, Black NL, Cheng JT, Cotler MJ, McKenna MJ, Lee DJ, Lewis JA, Rosowski JJ, Remenschneider AK (2016) Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res 340:191–203. doi:10.1016/j.heares.2016.03.005 PubMedCrossRef Kozin ED, Black NL, Cheng JT, Cotler MJ, McKenna MJ, Lee DJ, Lewis JA, Rosowski JJ, Remenschneider AK (2016) Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res 340:191–203. doi:10.​1016/​j.​heares.​2016.​03.​005 PubMedCrossRef
64.
Zurück zum Zitat Kuo CY, Wilson E, Fuson A, Gandhi N, Monfaredi R, Jenkins A, Romero M, Santoro M, Fisher JP, Cleary K, Reilly B (2017) Repair of tympanic membrane perforations with customized, bioprinted ear grafts using chinchilla models. Tissue Eng Part A. doi:10.1089/ten.TEA.2017.0246 Kuo CY, Wilson E, Fuson A, Gandhi N, Monfaredi R, Jenkins A, Romero M, Santoro M, Fisher JP, Cleary K, Reilly B (2017) Repair of tympanic membrane perforations with customized, bioprinted ear grafts using chinchilla models. Tissue Eng Part A. doi:10.​1089/​ten.​TEA.​2017.​0246
65.
Zurück zum Zitat Onerci Altunay Z, Bly JA, Edwards PK, Holmes DR, Hamilton GS, O’Brien EK, Carr AB, Camp JJ, Stokken JK, Pallanch JF (2016) Three dimensional printing of large nasal septal perforations for optimal prosthetic closure. Am J Rhinol Allergy 30(4):287–293. doi:10.2500/ajra.2016.30.4324 PubMedCrossRef Onerci Altunay Z, Bly JA, Edwards PK, Holmes DR, Hamilton GS, O’Brien EK, Carr AB, Camp JJ, Stokken JK, Pallanch JF (2016) Three dimensional printing of large nasal septal perforations for optimal prosthetic closure. Am J Rhinol Allergy 30(4):287–293. doi:10.​2500/​ajra.​2016.​30.​4324 PubMedCrossRef
67.
Zurück zum Zitat Choi YD, Kim Y, Park E (2017) Patient-specific augmentation rhinoplasty using a three-dimensional simulation program and three-dimensional printing. Aesthet Surg J. doi:10.1093/asj/sjx046 PubMed Choi YD, Kim Y, Park E (2017) Patient-specific augmentation rhinoplasty using a three-dimensional simulation program and three-dimensional printing. Aesthet Surg J. doi:10.​1093/​asj/​sjx046 PubMed
68.
Zurück zum Zitat Kim YS, Shin YS, Park DY, Choi JW, Park JK, Kim DH, Kim CH, Park SA (2015) The application of three-dimensional printing in animal model of augmentation rhinoplasty. Ann Biomed Eng 43(9):2153–2162. doi:10.1007/s10439-015-1261-3 PubMedCrossRef Kim YS, Shin YS, Park DY, Choi JW, Park JK, Kim DH, Kim CH, Park SA (2015) The application of three-dimensional printing in animal model of augmentation rhinoplasty. Ann Biomed Eng 43(9):2153–2162. doi:10.​1007/​s10439-015-1261-3 PubMedCrossRef
73.
77.
79.
Zurück zum Zitat Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D, Leuven Tracheal Transplant Group (2010) Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 362(2):138–145. doi:10.1056/NEJMoa0810653 PubMedCrossRef Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D, Leuven Tracheal Transplant Group (2010) Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 362(2):138–145. doi:10.​1056/​NEJMoa0810653 PubMedCrossRef
80.
Zurück zum Zitat Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18(6):727–734PubMedCrossRef Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18(6):727–734PubMedCrossRef
84.
Zurück zum Zitat Ott LM, Zabel TA, Walker NK, Farris AL, Chakroff JT, Ohst DG, Johnson JK, Gehrke SH, Weatherly RA, Detamore MS (2016) Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair. Biomed Mater 11(2):025020. doi:10.1088/1748-6041/11/2/025020 PubMedCrossRef Ott LM, Zabel TA, Walker NK, Farris AL, Chakroff JT, Ohst DG, Johnson JK, Gehrke SH, Weatherly RA, Detamore MS (2016) Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair. Biomed Mater 11(2):025020. doi:10.​1088/​1748-6041/​11/​2/​025020 PubMedCrossRef
85.
Zurück zum Zitat Stannard W, O’Callaghan C (2006) Ciliary function and the role of cilia in clearance. J Aerosol Med 19(1):110–115PubMedCrossRef Stannard W, O’Callaghan C (2006) Ciliary function and the role of cilia in clearance. J Aerosol Med 19(1):110–115PubMedCrossRef
86.
Zurück zum Zitat Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH (2014) Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs 38(6):E95–E105. doi:10.1111/aor.12310 PubMedCrossRef Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH (2014) Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs 38(6):E95–E105. doi:10.​1111/​aor.​12310 PubMedCrossRef
87.
Zurück zum Zitat Park JH, Park JY, Nam IC, Hwang SH, Kim CS, Jung JW, Jang J, Lee H, Choi Y, Park SH, Kim SW, Cho DW (2015) Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration. Acta Biomater 25:56–64. doi:10.1016/j.actbio.2015.07.014 PubMedCrossRef Park JH, Park JY, Nam IC, Hwang SH, Kim CS, Jung JW, Jang J, Lee H, Choi Y, Park SH, Kim SW, Cho DW (2015) Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration. Acta Biomater 25:56–64. doi:10.​1016/​j.​actbio.​2015.​07.​014 PubMedCrossRef
89.
Zurück zum Zitat Goldstein TA, Smith BD, Zeltsman D, Grande D, Smith LP (2015) Introducing a 3-dimensionally printed, tissue-engineered graft for airway reconstruction: a pilot study. Otolaryngol Head Neck Surg 153(6):1001–1006. doi:10.1177/0194599815605492 PubMedCrossRef Goldstein TA, Smith BD, Zeltsman D, Grande D, Smith LP (2015) Introducing a 3-dimensionally printed, tissue-engineered graft for airway reconstruction: a pilot study. Otolaryngol Head Neck Surg 153(6):1001–1006. doi:10.​1177/​0194599815605492​ PubMedCrossRef
90.
Zurück zum Zitat Rehmani SS, Al-Ayoubi AM, Ayub A, Barsky M, Lewis E, Flores R, Lebovics R, Bhora FY (2017) Three-dimensional-printed bioengineered tracheal grafts: preclinical results and potential for human use. Ann Thorac Surg. doi:10.1016/j.athoracsur.2017.03.051 Rehmani SS, Al-Ayoubi AM, Ayub A, Barsky M, Lewis E, Flores R, Lebovics R, Bhora FY (2017) Three-dimensional-printed bioengineered tracheal grafts: preclinical results and potential for human use. Ann Thorac Surg. doi:10.​1016/​j.​athoracsur.​2017.​03.​051
93.
Zurück zum Zitat Lee M, DeConde A, Aghaloo T, Lee M, Tetradis S, St. John M (2013) Biomimetic scaffolds loaded with adipose-derived stem cells and BMP-2 induce healing of mandibular defects. Otolaryngol Head and Neck Surg 149(2 Suppl):35–36CrossRef Lee M, DeConde A, Aghaloo T, Lee M, Tetradis S, St. John M (2013) Biomimetic scaffolds loaded with adipose-derived stem cells and BMP-2 induce healing of mandibular defects. Otolaryngol Head and Neck Surg 149(2 Suppl):35–36CrossRef
98.
Zurück zum Zitat Lu YCF, Zhao X, Shao ZZ, Cao ZB (2006) Experimental study on facial nerve regeneration by porous silk fibroin conduit. Chin J Otorhinolaryngol Head Neck Surg 41(8):603–606 (article in Chinese) Lu YCF, Zhao X, Shao ZZ, Cao ZB (2006) Experimental study on facial nerve regeneration by porous silk fibroin conduit. Chin J Otorhinolaryngol Head Neck Surg 41(8):603–606 (article in Chinese)
99.
Zurück zum Zitat Ma F, Zhu T, Xu F, Wang Z, Zheng Y, Tang Q, Chen L, Shen Y, Zhu J (2017) Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration. Acta Biomater 50:188–197. doi:10.1016/j.actbio.2016.11.064 PubMedCrossRef Ma F, Zhu T, Xu F, Wang Z, Zheng Y, Tang Q, Chen L, Shen Y, Zhu J (2017) Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration. Acta Biomater 50:188–197. doi:10.​1016/​j.​actbio.​2016.​11.​064 PubMedCrossRef
Metadaten
Titel
3D printing for clinical application in otorhinolaryngology
verfasst von
Nongping Zhong
Xia Zhao
Publikationsdatum
19.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology / Ausgabe 12/2017
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-017-4743-0

Weitere Artikel der Ausgabe 12/2017

European Archives of Oto-Rhino-Laryngology 12/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.