Skip to main content
Erschienen in: European Archives of Psychiatry and Clinical Neuroscience 2/2014

01.03.2014 | Original Paper

CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia

verfasst von: Claudia Wolf, Holger Mohr, Thomas Schneider-Axmann, Andreas Reif, Thomas Wobrock, Harald Scherk, Susanne Kraft, Andrea Schmitt, Peter Falkai, Oliver Gruber

Erschienen in: European Archives of Psychiatry and Clinical Neuroscience | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Affective deficits are one common denominator of schizophrenia (SZ), bipolar disorder (BD) and obsessive compulsive disorder (OCD) with the amygdala indicated as one of the major structures involved in emotion regulation. Previous findings of differences in amygdala volume between healthy controls and patients with SZ, BD or OCD diverge with respect to the affected hemisphere, size and direction of the effect. Variability in the CACNA1C gene has been linked to BD, SZ as well as structural and functional variation in the amygdala in healthy people and patients with BD. We were interested to investigate whether amygdala volumes differ between hemispheres, diagnostic or genotype groups, and whether any interactive effects exist. We combined genotyping of SNP rs1006737 in CACNA1C with structural MRI measurements of relative gray matter (GM) amygdala volume in patients with SZ, BD or OCD as well as healthy controls (N Total = 72). The CACNA1C genotype showed a significant effect on relative GM amygdala volume in patients with SZ. There was a significant left versus right relative GM amygdala volume decrease in patients with SZ or BD. The effects of hemisphere and diagnosis (controls vs. patients with SZ) on relative GM amygdala volume were genotype specific. Our data suggest that the CACNA1C genotype may account for some heterogeneity in the effects of hemisphere and diagnosis on amygdala volume when comparing patients with SZ and controls and point to disturbed Ca2+-signaling as a plausible mechanism contributing to the pathology in patients with SZ.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM (2009) Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatr 195:194–201CrossRef Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM (2009) Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatr 195:194–201CrossRef
2.
Zurück zum Zitat Blond BN, Fredericks CA, Blumberg HP (2012) Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disord 14:340–355PubMedCrossRef Blond BN, Fredericks CA, Blumberg HP (2012) Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disord 14:340–355PubMedCrossRef
3.
Zurück zum Zitat Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatr 162:2233–2245PubMedCrossRef Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatr 162:2233–2245PubMedCrossRef
4.
Zurück zum Zitat Kwon JS, Shin YW, Kim CW, Kim YI, Youn T, Han MH et al (2003) Similarity and disparity of obsessive-compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J Neurol Neurosurg Psychiatr 74:962–964PubMedCrossRef Kwon JS, Shin YW, Kim CW, Kim YI, Youn T, Han MH et al (2003) Similarity and disparity of obsessive-compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J Neurol Neurosurg Psychiatr 74:962–964PubMedCrossRef
5.
Zurück zum Zitat Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32:525–549PubMedCentralPubMedCrossRef Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32:525–549PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16:43–51PubMedCrossRef Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16:43–51PubMedCrossRef
7.
Zurück zum Zitat Rotge JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M et al (2009) Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatr 65:75–83CrossRef Rotge JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M et al (2009) Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatr 65:75–83CrossRef
8.
Zurück zum Zitat Strakowski SM, Delbello MP, Adler CM (2005) The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatr 10:105–116CrossRef Strakowski SM, Delbello MP, Adler CM (2005) The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatr 10:105–116CrossRef
9.
Zurück zum Zitat Strakowski SM, Adler CM, Almeida J, Altshuler LL, Blumberg HP, Chang KD et al (2012) The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord 14:313–325PubMedCrossRef Strakowski SM, Adler CM, Almeida J, Altshuler LL, Blumberg HP, Chang KD et al (2012) The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord 14:313–325PubMedCrossRef
10.
Zurück zum Zitat Szeszko PR, Robinson D, Alvir JM, Bilder RM, Lencz T, Ashtari M et al (1999) Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch Gen Psychiatr 56:913–919PubMedCrossRef Szeszko PR, Robinson D, Alvir JM, Bilder RM, Lencz T, Ashtari M et al (1999) Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch Gen Psychiatr 56:913–919PubMedCrossRef
11.
Zurück zum Zitat Townsend J, Altshuler LL (2012) Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 14:326–339PubMedCrossRef Townsend J, Altshuler LL (2012) Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 14:326–339PubMedCrossRef
12.
Zurück zum Zitat Yoshida T, McCarley RW, Nakamura M, Lee K, Koo MS, Bouix S et al (2009) A prospective longitudinal volumetric MRI study of superior temporal gyrus gray matter and amygdala-hippocampal complex in chronic schizophrenia. Schizophr Res 113:84–94PubMedCentralPubMedCrossRef Yoshida T, McCarley RW, Nakamura M, Lee K, Koo MS, Bouix S et al (2009) A prospective longitudinal volumetric MRI study of superior temporal gyrus gray matter and amygdala-hippocampal complex in chronic schizophrenia. Schizophr Res 113:84–94PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Jogia J, Ruberto G, Lelli-Chiesa G, Vassos E, Maieru M, Tatarelli R et al (2011) The impact of the CACNA1C gene polymorphism on frontolimbic function in bipolar disorder. Mol Psychiatr 16:1070–1071CrossRef Jogia J, Ruberto G, Lelli-Chiesa G, Vassos E, Maieru M, Tatarelli R et al (2011) The impact of the CACNA1C gene polymorphism on frontolimbic function in bipolar disorder. Mol Psychiatr 16:1070–1071CrossRef
14.
Zurück zum Zitat Perrier E, Pompei F, Ruberto G, Vassos E, Collier D, Frangou S (2011) Initial evidence for the role of CACNA1C on subcortical brain morphology in patients with bipolar disorder. Eur Psychiatr 26:135–137CrossRef Perrier E, Pompei F, Ruberto G, Vassos E, Collier D, Frangou S (2011) Initial evidence for the role of CACNA1C on subcortical brain morphology in patients with bipolar disorder. Eur Psychiatr 26:135–137CrossRef
15.
Zurück zum Zitat Wessa M, Linke J, Witt SH, Nieratschker V, Esslinger C, Kirsch P et al (2010) The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatr 15:1126–1127CrossRef Wessa M, Linke J, Witt SH, Nieratschker V, Esslinger C, Kirsch P et al (2010) The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatr 15:1126–1127CrossRef
16.
Zurück zum Zitat Tesli M, Skatun KC, Ousdal OT, Brown AA, Thoresen C, Agartz I et al (2013) CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS ONE 8:e56970PubMedCentralPubMedCrossRef Tesli M, Skatun KC, Ousdal OT, Brown AA, Thoresen C, Agartz I et al (2013) CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS ONE 8:e56970PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatr 15:1016–1022CrossRef Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatr 15:1016–1022CrossRef
18.
Zurück zum Zitat Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sorensen KM et al (2010) CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatr 15:119–121CrossRef Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sorensen KM et al (2010) CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatr 15:119–121CrossRef
19.
Zurück zum Zitat Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058PubMedCentralPubMedCrossRef Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al (2008) Whole-genome association study of bipolar disorder. Mol Psychiatr 13:558–569CrossRef Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al (2008) Whole-genome association study of bipolar disorder. Mol Psychiatr 13:558–569CrossRef
21.
Zurück zum Zitat Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P et al (2010) Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatr 67:803–811PubMedCrossRef Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P et al (2010) Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatr 67:803–811PubMedCrossRef
22.
Zurück zum Zitat Roussos P, Giakoumaki SG, Georgakopoulos A, Robakis NK, Bitsios P (2011) The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord 13:250–259PubMedCrossRef Roussos P, Giakoumaki SG, Georgakopoulos A, Robakis NK, Bitsios P (2011) The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord 13:250–259PubMedCrossRef
23.
Zurück zum Zitat Strohmaier J, Amelang M, Hothorn LA, Witt SH, Nieratschker V, Gerhard D et al (2013) The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatr 18:607–613CrossRef Strohmaier J, Amelang M, Hothorn LA, Witt SH, Nieratschker V, Gerhard D et al (2013) The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatr 18:607–613CrossRef
24.
Zurück zum Zitat Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML (2012) Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 14:375–410PubMedCrossRef Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML (2012) Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 14:375–410PubMedCrossRef
25.
Zurück zum Zitat Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352CrossRef Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352CrossRef
26.
Zurück zum Zitat Brierley B, Shaw P, David AS (2002) The human amygdala: a systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Res Brain Res Rev 39:84–105PubMedCrossRef Brierley B, Shaw P, David AS (2002) The human amygdala: a systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Res Brain Res Rev 39:84–105PubMedCrossRef
27.
Zurück zum Zitat Pruessner JC, Li LM, Serles W, Pruessner M, Collins DL, Kabani N et al (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 10:433–442PubMedCrossRef Pruessner JC, Li LM, Serles W, Pruessner M, Collins DL, Kabani N et al (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 10:433–442PubMedCrossRef
28.
Zurück zum Zitat Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B et al (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatr 67:939–945PubMedCentralPubMedCrossRef Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B et al (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatr 67:939–945PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J et al (2012) The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 37:677–684PubMedCrossRef Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J et al (2012) The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 37:677–684PubMedCrossRef
30.
Zurück zum Zitat Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, et al. (2013) Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatr 18:708–712 Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, et al. (2013) Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatr 18:708–712
31.
Zurück zum Zitat Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ et al (2011) Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res 127:46–57PubMedCrossRef Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ et al (2011) Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res 127:46–57PubMedCrossRef
32.
Zurück zum Zitat Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatr 165:1015–1023PubMedCentralPubMedCrossRef Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatr 165:1015–1023PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Kong L, Bachmann S, Thomann PA, Essig M, Schroder J (2012) Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 134:27–32PubMedCrossRef Kong L, Bachmann S, Thomann PA, Essig M, Schroder J (2012) Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 134:27–32PubMedCrossRef
34.
Zurück zum Zitat Meisenzahl EM, Koutsouleris N, Bottlender R, Scheuerecker J, Jager M, Teipel SJ et al (2008) Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr Res 104:44–60PubMedCrossRef Meisenzahl EM, Koutsouleris N, Bottlender R, Scheuerecker J, Jager M, Teipel SJ et al (2008) Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr Res 104:44–60PubMedCrossRef
35.
Zurück zum Zitat Vita A, De Peri L, Silenzi C, Dieci M (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 82:75–88PubMedCrossRef Vita A, De Peri L, Silenzi C, Dieci M (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 82:75–88PubMedCrossRef
36.
Zurück zum Zitat Watson DR, Anderson JM, Bai F, Barrett SL, McGinnity TM, Mulholland CC et al (2012) A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res 227:91–99PubMedCrossRef Watson DR, Anderson JM, Bai F, Barrett SL, McGinnity TM, Mulholland CC et al (2012) A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res 227:91–99PubMedCrossRef
37.
Zurück zum Zitat Witthaus H, Kaufmann C, Bohner G, Ozgurdal S, Gudlowski Y, Gallinat J et al (2009) Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatr Res 173:163–169CrossRef Witthaus H, Kaufmann C, Bohner G, Ozgurdal S, Gudlowski Y, Gallinat J et al (2009) Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatr Res 173:163–169CrossRef
38.
Zurück zum Zitat Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RC, Baare WF, van Oel C et al (2006) Genetic contributions to human brain morphology and intelligence. J Neurosci 26:10235–10242PubMedCrossRef Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RC, Baare WF, van Oel C et al (2006) Genetic contributions to human brain morphology and intelligence. J Neurosci 26:10235–10242PubMedCrossRef
39.
Zurück zum Zitat Peper JS, Schnack HG, Brouwer RM, Van Baal GC, Pjetri E, Szekely E et al (2009) Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. Hum Brain Mapp 30:2184–2196PubMedCrossRef Peper JS, Schnack HG, Brouwer RM, Van Baal GC, Pjetri E, Szekely E et al (2009) Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. Hum Brain Mapp 30:2184–2196PubMedCrossRef
40.
Zurück zum Zitat Kobrinsky E, Tiwari S, Maltsev VA, Harry JB, Lakatta E, Abernethy DR et al (2005) Differential role of the alpha1C subunit tails in regulation of the Cav1.2 channel by membrane potential, beta subunits, and Ca2+ ions. J Biol Chem 280:12474–12485PubMedCrossRef Kobrinsky E, Tiwari S, Maltsev VA, Harry JB, Lakatta E, Abernethy DR et al (2005) Differential role of the alpha1C subunit tails in regulation of the Cav1.2 channel by membrane potential, beta subunits, and Ca2+ ions. J Biol Chem 280:12474–12485PubMedCrossRef
41.
Zurück zum Zitat Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339PubMedCrossRef Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339PubMedCrossRef
42.
Zurück zum Zitat Monfils MH, Cowansage KK, LeDoux JE (2007) Brain-derived neurotrophic factor: linking fear learning to memory consolidation. Mol Pharmacol 72:235–237PubMedCrossRef Monfils MH, Cowansage KK, LeDoux JE (2007) Brain-derived neurotrophic factor: linking fear learning to memory consolidation. Mol Pharmacol 72:235–237PubMedCrossRef
43.
Zurück zum Zitat Wolf C, Linden DE (2012) Biological pathways to adaptability–interactions between genome, epigenome, nervous system and environment for adaptive behavior. Genes Brain Behav 11:3–28PubMedCrossRef Wolf C, Linden DE (2012) Biological pathways to adaptability–interactions between genome, epigenome, nervous system and environment for adaptive behavior. Genes Brain Behav 11:3–28PubMedCrossRef
44.
Zurück zum Zitat Langwieser N, Christel CJ, Kleppisch T, Hofmann F, Wotjak CT, Moosmang S (2010) Homeostatic switch in hebbian plasticity and fear learning after sustained loss of Cav1.2 calcium channels. J Neurosci 30:8367–8375PubMedCrossRef Langwieser N, Christel CJ, Kleppisch T, Hofmann F, Wotjak CT, Moosmang S (2010) Homeostatic switch in hebbian plasticity and fear learning after sustained loss of Cav1.2 calcium channels. J Neurosci 30:8367–8375PubMedCrossRef
45.
Zurück zum Zitat Shinnick-Gallagher P, McKernan MG, Xie J, Zinebi F (2003) L-type voltage-gated calcium channels are involved in the in vivo and in vitro expression of fear conditioning. Ann NY Acad Sci 985:135–149PubMedCrossRef Shinnick-Gallagher P, McKernan MG, Xie J, Zinebi F (2003) L-type voltage-gated calcium channels are involved in the in vivo and in vitro expression of fear conditioning. Ann NY Acad Sci 985:135–149PubMedCrossRef
46.
Zurück zum Zitat Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M et al (2010) Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatr 68:801–810CrossRef Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M et al (2010) Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatr 68:801–810CrossRef
47.
Zurück zum Zitat Mogilnicka E, Czyrak A, Maj J (1987) Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 138:413–416PubMedCrossRef Mogilnicka E, Czyrak A, Maj J (1987) Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 138:413–416PubMedCrossRef
48.
Zurück zum Zitat Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S et al (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 113:1430–1439PubMedCentralPubMedCrossRef Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S et al (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 113:1430–1439PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Franke B, Vasquez AA, Veltman JA, Brunner HG, Rijpkema M, Fernandez G (2010) Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biol Psychiatr 68:586–588CrossRef Franke B, Vasquez AA, Veltman JA, Brunner HG, Rijpkema M, Fernandez G (2010) Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biol Psychiatr 68:586–588CrossRef
50.
Zurück zum Zitat Soeiro-de-Souza MG, Otaduy MC, Dias CZ, Bio DS, Machado-Vieira R, Moreno RA (2012) The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. J Affect Disord 141:94–101PubMedCrossRef Soeiro-de-Souza MG, Otaduy MC, Dias CZ, Bio DS, Machado-Vieira R, Moreno RA (2012) The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. J Affect Disord 141:94–101PubMedCrossRef
51.
Zurück zum Zitat Wang F, McIntosh AM, He Y, Gelernter J, Blumberg HP (2011) The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 13:696–700PubMedCentralPubMedCrossRef Wang F, McIntosh AM, He Y, Gelernter J, Blumberg HP (2011) The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 13:696–700PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Giegling I, Genius J, Benninghoff J, Rujescu D (2010) Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis. Prog Neuropsychopharmacol Biol Psychiatr 34:1375–1380CrossRef Giegling I, Genius J, Benninghoff J, Rujescu D (2010) Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis. Prog Neuropsychopharmacol Biol Psychiatr 34:1375–1380CrossRef
53.
Zurück zum Zitat Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C et al (2010) Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA 107:10584–10589PubMedCrossRef Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C et al (2010) Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA 107:10584–10589PubMedCrossRef
54.
Zurück zum Zitat Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 43:70–84PubMedCrossRef Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 43:70–84PubMedCrossRef
55.
Zurück zum Zitat Rushlow WJ, Seah C, Sutton LP, Bjelica A, Rajakumar N (2009) Antipsychotics affect multiple calcium calmodulin dependent proteins. Neuroscience 161:877–886PubMedCrossRef Rushlow WJ, Seah C, Sutton LP, Bjelica A, Rajakumar N (2009) Antipsychotics affect multiple calcium calmodulin dependent proteins. Neuroscience 161:877–886PubMedCrossRef
56.
Zurück zum Zitat Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747PubMedCentralPubMed Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747PubMedCentralPubMed
Metadaten
Titel
CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia
verfasst von
Claudia Wolf
Holger Mohr
Thomas Schneider-Axmann
Andreas Reif
Thomas Wobrock
Harald Scherk
Susanne Kraft
Andrea Schmitt
Peter Falkai
Oliver Gruber
Publikationsdatum
01.03.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Psychiatry and Clinical Neuroscience / Ausgabe 2/2014
Print ISSN: 0940-1334
Elektronische ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-013-0427-y

Weitere Artikel der Ausgabe 2/2014

European Archives of Psychiatry and Clinical Neuroscience 2/2014 Zur Ausgabe

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.