Skip to main content
Log in

ACC Glu/GABA ratio is decreased in euthymic bipolar disorder I patients: possible in vivo neurometabolite explanation for mood stabilization

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Bipolar disorder (BD) is characterized by unstable mood states ranging from mania to depression. Although there is some evidence that mood instability may result from an imbalance between excitatory glutamatergic and inhibitory GABA-ergic neurotransmission, few proton magnetic resonance spectroscopy (1H-MRS) studies have measured these two neurometabolites simultaneously in BD. The enzyme glutamic acid decarboxylase (GAD1) catalyzes the decarboxylation of glutamate (Glu) to GABA, and its single nucleotide polymorphisms (SNPs) might influence Glu/GABA ratio. Thus, we investigated Glu/GABA ratio in the dorsal anterior cingulate cortex (dACC) of euthymic BD type I patients and healthy controls (HC), and assessed the influence of both mood stabilizers and GAD1 SNPs on this ratio. Eighty-eight subjects (50 euthymic BD type I patients and 38 HC) underwent 3T 1H-MRS in the dACC (2 × 2 × 4.5 cm3) using a two-dimensional JPRESS sequence and all subjects were genotyped for 4 SNPs in the GAD1 gene. BD patients had lower dACC Glu/GABA ratio compared to HC, where this was influenced by anticonvulsant and antipsychotic medications, but not lithium. The presence of GAD1 rs1978340 allele A was associated with higher Glu/GABA ratio in BD, while patients without this allele taking mood stabilizers had a lower Glu/GABA ratio. The lowering of dACC Glu/GABA could be one explanation for the mood stabilizing action of anticonvulsants and antipsychotics in BD type I euthymia. Therefore, this putative role of Glu/GABA ratio and the influence of GAD1 genotype interacting with mood stabilization medication should be confirmed by further studies involving larger samples and other mood states.

ClincalTrials.gov registration: NCT01237158.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goodwin FK, Jamison KR (2007) Manic-depressive illness: bipolar and recurrent unipolar disorders, 2nd edn. Oxford University Press, New York

  2. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R et al (2011) Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol (Lond). 589(Pt 23):5845–5855

    CAS  PubMed Central  Google Scholar 

  3. Rossignol E (2011) Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011:649325

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yüksel C, Ongur D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 68(9):785–794

    PubMed  PubMed Central  Google Scholar 

  5. Brady RO, McCarthy JM, Prescot AP, Jensen JE, Cooper AJ, Cohen BM et al (2013) Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 15(4):434–439

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Altamura CA, Mauri MC, Ferrara A, Moro AR, D'Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry. 150(11):1731–1733

    CAS  PubMed  Google Scholar 

  7. Petty F (1994) Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin Chem. 40(2):296–302

    CAS  PubMed  Google Scholar 

  8. Post RM, Ballenger JC, Hare TA, Goodwin FK, R LC, Jimerson DC et al (1980) Cerebrospinal fluid GABA in normals and patients with affective disorders. Brain Res Bull 5(Suppl. 2):755–759

  9. Gerner RH, Fairbanks L, Anderson GM, Young JG, Scheinin M, Linnoila M et al (1984) CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am J Psychiatry. 141(12):1533–1540

    CAS  PubMed  Google Scholar 

  10. Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN (2012) Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord. 14(5):478–487

    CAS  PubMed  Google Scholar 

  11. Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D et al (2012) Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res. 203(2–3):111–125

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiapponi C, Piras F, Piras F, Caltagirone C, Spalletta G (2016) GABA system in schizophrenia and mood disorders: a mini review on third-generation imaging studies. Front Psychiatry. 7:61

    PubMed  PubMed Central  Google Scholar 

  13. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC et al (2017) Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry. 81(10):886–897

    CAS  PubMed  Google Scholar 

  14. Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2(5):255–267

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H et al (2011) Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord. 41(4):447–454

    PubMed  Google Scholar 

  16. Anticevic A, Savic A, Repovs G, Yang G, McKay DR, Sprooten E et al (2015) Ventral anterior cingulate connectivity distinguished nonpsychotic bipolar illness from psychotic bipolar disorder and schizophrenia. Schizophr Bull. 41(1):133–143

    PubMed  Google Scholar 

  17. Soeiro de Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C et al (2018) Anterior cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: a proton magnetic resonance spectroscopy study. Biol Psychiatry Cogn Neurosci Neuroimaging. https://doi.org/10.1016/j.bpsc.2018.02.007

  18. Colla M, Schubert F, Bubner M, Heidenreich JO, Bajbouj M, Seifert F et al (2009) Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. Mol Psychiatry 14(7):696–704, 647

  19. Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Ashworth F, Sule A et al (2007) Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry. 61(6):806–812

    CAS  PubMed  Google Scholar 

  20. Senaratne R, Milne AM, MacQueen GM, Hall GBC (2009) Increased choline-containing compounds in the orbitofrontal cortex and hippocampus in euthymic patients with bipolar disorder: a proton magnetic resonance spectroscopy study. Psychiatry Res. 172(3):205–209

    PubMed  Google Scholar 

  21. Ehrlich A, Schubert F, Pehrs C, Gallinat J (2015) Alterations of cerebral glutamate in the euthymic state of patients with bipolar disorder. Psychiatry Res. 233(2):73–80

    PubMed  Google Scholar 

  22. Soeiro de Souza MG, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa Leite C et al (2015) Anterior cingulate Glutamate-Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol 25(12):2221–2229

  23. Levy LM, Degnan AJ (2013) GABA-based evaluation of neurologic conditions: MR spectroscopy. AJNR Am J Neuroradiol. 34(2):259–265

    CAS  PubMed  Google Scholar 

  24. Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets MGJC, Joëls M et al (2016) Brain GABA levels across psychiatric disorders: a systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp 37(9):3337–3352

    PubMed  PubMed Central  Google Scholar 

  25. Wang PW, Sailasuta N, Chandler RA, Ketter TA (2006) Magnetic resonance spectroscopy measurement of cerebral gamma-aminobutyric acid concentrations in patients with bipolar disorders. Acta Neuropsychiatr 2(18):120–126

    Google Scholar 

  26. Kaufman RE, Ostacher MJ, Marks EH, Simon NM, Sachs GS, Jensen JE et al (2009) Brain GABA levels in patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 33(3):427–434

    CAS  PubMed  Google Scholar 

  27. Godlewska BR, Yip SW, Near J, Goodwin GM, Cowen PJ (2014) Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy. Psychopharmacology 231(2):327–332

    CAS  PubMed  Google Scholar 

  28. Prisciandaro JJ, Tolliver BK, Prescot AP, Brenner HM, Renshaw PF, Brown TR et al (2017) Unique prefrontal GABA and glutamate disturbances in co-occurring bipolar disorder and alcohol dependence. Transl Psychiatry. 7(7):e1163

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang PW, Sailasuta N, Chandler RA, Ketter TA (2006) Magnetic resonance spectroscopic measurement of cerebral gamma-aminobutyric acid concentrations in patients with bipolar disorders. Acta Neuropsychiatr 18(2):120–126

    CAS  PubMed  Google Scholar 

  30. Ford TC, Nibbs R, Crewther DP (2017) Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed social disorganisation. Neuroimage Clin. 16:125–131

    PubMed  PubMed Central  Google Scholar 

  31. Ford TC, Nibbs R, Crewther DP (2017) Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits. PLoS ONE 12(7):e0181961

    PubMed  PubMed Central  Google Scholar 

  32. Anwyl R (1991) Modulation of vertebrate neuronal calcium channels by transmitters. Brain Res Brain Res Rev. 16(3):265–281

    CAS  PubMed  Google Scholar 

  33. Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7(1):91–100

    CAS  PubMed  Google Scholar 

  34. Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB et al (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89(6):2115–2119

    CAS  PubMed  Google Scholar 

  35. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 57(11):1061–1069

    CAS  PubMed  Google Scholar 

  36. Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry. 59(6):521–529

    CAS  PubMed  Google Scholar 

  37. Woo T-UW, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-d-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61(7):649–657

  38. Fatemi SH, Hossein Fatemi S, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 72(2–3):109–122

    PubMed  Google Scholar 

  39. Thompson M, Weickert CS, Wyatt E, Webster MJ (2009) Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res. 43(11):970–977

    PubMed  Google Scholar 

  40. Lundorf MD, Buttenschøn HN, Foldager L, Blackwood DHR, Muir WJ, Murray V et al (2005) Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 135B(1):94–101

    CAS  PubMed  Google Scholar 

  41. Chung Y-CE, Chen S-C, Chuang L-C, Shih W-L, Chiu Y-H, Lu M-L et al (2017) Evaluation of the interaction between genetic variants of GAD1 and miRNA in bipolar disorders. J Affect Disord 223:1–7

  42. Marenco S, Savostyanova AA, van der Veen JW, Geramita M, Stern A, Barnett AS et al (2010) Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology. 35(8):1708–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G et al (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 7(Suppl 1):S71–80

    CAS  PubMed  Google Scholar 

  44. Mesdjian E, Ciesielski L, Valli M, Bruguerolle B, Jadot G, Bouyard P et al (1982) Sodium valproate: kinetic profile and effects on GABA levels in various brain areas of the rat. Prog Neuropsychopharmacol Biol Psychiatry. 6(3):223–233

    CAS  PubMed  Google Scholar 

  45. Pisanu C, Papadima EM, Del Zompo M, Squassina A (2018) Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: potential involvement of epigenetics. Neurosci Lett. 16(669):24–31

    Google Scholar 

  46. Gavin DP, Kartan S, Chase K, Jayaraman S, Sharma RP (2009) Histone deacetylase inhibitors and candidate gene expression: an in vivo and in vitro approach to studying chromatin remodeling in a clinical population. J Psychiatr Res. 43(9):870–876

    PubMed  Google Scholar 

  47. First MB, Spitzer RL, Williams JB (1996) Structured clinical interview for DSM-IV axis I disorders SCID-I. American Psychiatric Press, Washington, DC, p 1

    Google Scholar 

  48. DSM-IV PATFO (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Publishing, Inc, Washington, DC

  49. Moreira MT, Smith LA, Foxcroft D (2009) Social norms interventions to reduce alcohol misuse in university or college students. Cochrane Database Syst Rev 2009(3):CD006748. https://doi.org/10.1002/14651858.CD006748.pub2

    Article  Google Scholar 

  50. Young RC, Biggs JT, Ziegler VE, Meyer DA (1978) A rating scale for mania: reliability, validity, and sensitivity. Br J Psychiatry. 133:429–435

    CAS  PubMed  Google Scholar 

  51. Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 6(4):278–296

    CAS  PubMed  Google Scholar 

  52. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33 (quiz 34–57)

  53. Schulte RF, Lange T, Beck J, Meier D, Boesiger P (2006) Improved two-dimensional J-resolved spectroscopy. NMR Biomed. 19(2):264–270

    CAS  PubMed  Google Scholar 

  54. Tkác I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med. 41(4):649–656

    PubMed  Google Scholar 

  55. Fuchs A, Boesiger P, Schulte RF, Henning A (2013) ProFit revisited. Magn Reson Med. 71(2):458–468

    Google Scholar 

  56. Schulte RF, Boesiger P (2006) ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed. 19(2):255–263

    CAS  PubMed  Google Scholar 

  57. Provencher SWS (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 30(6):672–679

    CAS  PubMed  Google Scholar 

  58. van der Veen JW, de Beer R, Luyten PR, van Ormondt D (1988) Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med. 6(1):92–98

    PubMed  Google Scholar 

  59. Smith SA, Levante TO, de Beer R, Luyten PR, van Ormondt D (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A 106:75–105. https://doi.org/10.1006/jmra.1994.1008

    Article  CAS  Google Scholar 

  60. Fan T (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Mag Reson Spectrosc. 28:161–219

    CAS  Google Scholar 

  61. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 13(3):129–153

    CAS  PubMed  Google Scholar 

  62. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG et al (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med. 55(6):1219–1226

    CAS  PubMed  Google Scholar 

  63. Mlynárik V, Gruber S, Moser E (2001) Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed. 14(5):325–331

    PubMed  Google Scholar 

  64. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 20(1):45–57

    CAS  PubMed  Google Scholar 

  65. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramér-Rao bounds: an evaluation tool for quantitation. NMR Biomed. 14(4):278–283

    CAS  Google Scholar 

  66. Laitinen J, Samarut J, Hölttä E (1994) A nontoxic and versatile protein salting-out method for isolation of DNA. Biotechniques 17(2):316–322

  67. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 25(1):1–27

    CAS  PubMed  Google Scholar 

  68. Brix MK, Ersland L, Hugdahl K, Grüner R, Posserud M-B, Hammar Å et al (2015) Brain MR spectroscopy in autism spectrum disorder-the GABA excitatory/inhibitory imbalance theory revisited. Front Hum Neurosci. 9:365

    PubMed  PubMed Central  Google Scholar 

  69. Bush G, Luu P, Posner M (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci (Regul Ed). 4(6):215–222

    CAS  Google Scholar 

  70. Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 25:409–432

    CAS  PubMed  Google Scholar 

  71. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK et al (2018) Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 23(4):932–942. https://doi.org/10.1038/mp.2017.73

    Article  CAS  PubMed  Google Scholar 

  72. Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry. 159(4):663–665

    PubMed  Google Scholar 

  73. Stahl SM (2009) The Prescriber's Guide, antipsychotics and mood stabilizers. Cambridge University Press, Cambridge

  74. Cunningham MO, Dhillon A, Wood SJ, Jones RS (2000) Reciprocal modulation of glutamate and GABA release may underlie the anticonvulsant effect of phenytoin. Neuroscience 95(2):343–351

    CAS  PubMed  Google Scholar 

  75. Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL et al (2004) Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry. 56(5):340–348

    CAS  PubMed  Google Scholar 

  76. Scarr E, Pavey G, Sundram S, MacKinnon A, Dean B (2003) Decreased hippocampal NMDA, but not kainate or AMPA receptors in bipolar disorder. Bipolar Disord. 5(4):257–264

    CAS  PubMed  Google Scholar 

  77. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 32(9):1888–1902

    CAS  PubMed  Google Scholar 

  78. Goto N, Yoshimura R, Kakeda S, Nishimura J, Moriya J, Hayashi K et al (2012) Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia. Neuropsychiatr Dis Treat. 8:119–122

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo J, Min S, Wei K, Li P, Dong J, Liu Y-F (2011) Propofol protects against impairment of learning-memory and imbalance of hippocampal Glu/GABA induced by electroconvulsive shock in depressed rats. J Anesth. 25(5):657–665

    PubMed  Google Scholar 

  80. Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB et al (2003) Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry. 160(3):577–579

    PubMed  Google Scholar 

  81. Kessing LV (2019) What is early intervention in bipolar disorder? Recommendation of a pragmatic way focusing on early intervention in patients with newly diagnosed bipolar disorder. Bipolar Disord 21(2):168–169. https://doi.org/10.1111/bdi.12733

    Article  PubMed  Google Scholar 

  82. Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P et al (2016) Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major Depressive Disorder: Section 3. Pharmacological Treatments. Can J Psychiatry. 61(9):540–560

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Mood Disorders Unit (GRUDA) for their work, as well as the volunteers for their collaboration.

Funding

The Sao Paulo Research Foundation (FAPESP) financed this study (2012/23796-2 and 2010/12286-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Gerhardt Soeiro-de-Souza.

Ethics declarations

Conflict of interest

None of the authors report biomedical financial interests or potential conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scotti-Muzzi, E., Chile, T., Moreno, R. et al. ACC Glu/GABA ratio is decreased in euthymic bipolar disorder I patients: possible in vivo neurometabolite explanation for mood stabilization. Eur Arch Psychiatry Clin Neurosci 271, 537–547 (2021). https://doi.org/10.1007/s00406-020-01096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01096-0

Keywords

Navigation