Skip to main content
Erschienen in: International Journal of Legal Medicine 2/2018

01.03.2018 | Original Article

Fully automatic CT-histogram-based fat estimation in dead bodies

verfasst von: Michael Hubig, Sebastian Schenkl, Holger Muggenthaler, Felix Güttler, Andreas Heinrich, Ulf Teichgräber, Gita Mall

Erschienen in: International Journal of Legal Medicine | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Post-mortem body cooling is the foundation of temperature-based death time estimations (TDE) in homicide cases. Forensic science generally provides two types of p.m. body cooling models, the phenomenological and the physical models. Since both of them have to implement important individual parameters like the quantity of abdominal fat explicitly or implicitly, a more exact quantification and localization of abdominal fat is a desideratum in TDE. Particularly for the physical models, a better knowledge of the abdominal fat distribution could lead to relevant improvements in TDEs. Modern imaging methods in medicine like computed tomography (CT) are opening up the possibility to register the quantity and spatial distribution of body fat in individual cases with unprecedented precision. Since a CT-scan of an individual’s abdominal region can comprise 1000 slices as an order of magnitude, it is evident that their evaluation for body fat quantification and localization needs fully automated algorithms. The paper at hand describes the development and validation of such an algorithm called “CT-histogram-based fat estimation and quasi-segmentation” (CFES). The approach can be characterized as a weighted least squares method dealing with the gray value histogram of single CT-slices only. It does not require any anatomical a priori information nor does it perform time-consuming feature detection on the CT-images. The processing result consists in numbers quantifying the amount of abdominal body fat and of muscle-, organ-, and connective tissue. As a by-product, CFES generates a quasi-segmentation of the slices processed differentiating fat from muscle-, organ-, and connective tissue. The tool is validated on synthetic data and on CT-data of a special phantom. It was also applied on a CT-scan of a dead body, where it produced anatomically plausible results.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Marshall TK, Hoare FE (1962) Estimating the time of death—the rectal cooling after death and its mathematical expression. J Forensic Sci 7:56–81 Marshall TK, Hoare FE (1962) Estimating the time of death—the rectal cooling after death and its mathematical expression. J Forensic Sci 7:56–81
2.
Zurück zum Zitat Marshall TK, Hoare FE (1962) Estimating the time of death—the use of the cooling formula in the study of postmortem cooling. J Forensic Sci 7:189–210 Marshall TK, Hoare FE (1962) Estimating the time of death—the use of the cooling formula in the study of postmortem cooling. J Forensic Sci 7:189–210
3.
Zurück zum Zitat Marshall TK, Hoare FE (1962) Estimating the time of death—the use of body temperature in estimating the time of death. J Forensic Sci 7:211–221 Marshall TK, Hoare FE (1962) Estimating the time of death—the use of body temperature in estimating the time of death. J Forensic Sci 7:211–221
4.
Zurück zum Zitat Henßge C (1979) Die Präzision von Todeszeitschätzungen durch die mathematische Beschreibung der rektalen Leichenabkühlung. Z Rechtsmed 83:49–67CrossRefPubMed Henßge C (1979) Die Präzision von Todeszeitschätzungen durch die mathematische Beschreibung der rektalen Leichenabkühlung. Z Rechtsmed 83:49–67CrossRefPubMed
8.
Zurück zum Zitat Schenkl S, Muggenthaler H, Hubig M, Erdmann B, Weiser M, Zachow S, Heinrich A, Güttler FV, Teichgräber U, Mall G (2017) Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis. Int J Legal Med 131:699–712. https://doi.org/10.1007/s00414-016-1523-0 CrossRefPubMed Schenkl S, Muggenthaler H, Hubig M, Erdmann B, Weiser M, Zachow S, Heinrich A, Güttler FV, Teichgräber U, Mall G (2017) Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis. Int J Legal Med 131:699–712. https://​doi.​org/​10.​1007/​s00414-016-1523-0 CrossRefPubMed
11.
Zurück zum Zitat Hasse J (1995) Accuracy of subcutaneous fat measurement: comparison of skinfold calipers, ultrasound, and computed tomography. Orphanidou C, McCargar, Birmingham CL, et al. University of British Columbia and St. Paul's Hospital, Vancouver. Nutrition in Clinical Practice 10: 161-162. https://doi.org/10.1177/088453369501000414 Hasse J (1995) Accuracy of subcutaneous fat measurement: comparison of skinfold calipers, ultrasound, and computed tomography. Orphanidou C, McCargar, Birmingham CL, et al. University of British Columbia and St. Paul's Hospital, Vancouver. Nutrition in Clinical Practice 10: 161-162. https://​doi.​org/​10.​1177/​0884533695010004​14
12.
Zurück zum Zitat Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, Silbert JE (1982) Assessment of abdominal fat content by computed tomography. Am J Clin Nutr 36:172–177CrossRefPubMed Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, Silbert JE (1982) Assessment of abdominal fat content by computed tomography. Am J Clin Nutr 36:172–177CrossRefPubMed
13.
Zurück zum Zitat Hofer M (2010) CT-Kursbuch. Didamed-Verlag Düsseldorf Hofer M (2010) CT-Kursbuch. Didamed-Verlag Düsseldorf
14.
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Press Syndicate of the University of Cambridge, New York Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Press Syndicate of the University of Cambridge, New York
16.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC-9(1):62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC-9(1):62–66CrossRef
17.
Zurück zum Zitat Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122CrossRefPubMed Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122CrossRefPubMed
18.
Zurück zum Zitat Rogalla P, Meiri N, Hoksch B, Boeing H, Hamm B (1998) Low-dose spiral computed tomography for measuring abdominal fat volume and distribution in a clinical setting. Eur J Clin Nutr 52:597–602CrossRefPubMed Rogalla P, Meiri N, Hoksch B, Boeing H, Hamm B (1998) Low-dose spiral computed tomography for measuring abdominal fat volume and distribution in a clinical setting. Eur J Clin Nutr 52:597–602CrossRefPubMed
19.
Zurück zum Zitat Yoshizumi T, Nakamura T, Yamane M, Islam AHMW, Menju M, Yamasaki K, Arai T, Kotani K, Funahashi T, Yamashita S, Matsuzawa Y (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211(1):283–286CrossRefPubMed Yoshizumi T, Nakamura T, Yamane M, Islam AHMW, Menju M, Yamasaki K, Arai T, Kotani K, Funahashi T, Yamashita S, Matsuzawa Y (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211(1):283–286CrossRefPubMed
20.
Zurück zum Zitat Glasbey CA, Robinson CD (2002) Estimators of tissue proportions from X-ray CT images. Biometrics 58:928–936CrossRefPubMed Glasbey CA, Robinson CD (2002) Estimators of tissue proportions from X-ray CT images. Biometrics 58:928–936CrossRefPubMed
21.
Zurück zum Zitat Allen P, Branscheid W, Dobrowolski A, Horn P, Romvari R (2004) Schlachtkörperwertbestimmung beim Schwein – Röntgen-Computertomographie als mögliche Referenzmethode. Fleischwirtschaft 84(3):109–112 Allen P, Branscheid W, Dobrowolski A, Horn P, Romvari R (2004) Schlachtkörperwertbestimmung beim Schwein – Röntgen-Computertomographie als mögliche Referenzmethode. Fleischwirtschaft 84(3):109–112
23.
Zurück zum Zitat Johansen J, Egelandsdal B, Roe M, Kvaal K, Aastveit AH (2007) Calibration models for lamb carcass composition analysis using computerized tomography (CT) imaging. Chemom Intell Lab Syst 87:303–311CrossRef Johansen J, Egelandsdal B, Roe M, Kvaal K, Aastveit AH (2007) Calibration models for lamb carcass composition analysis using computerized tomography (CT) imaging. Chemom Intell Lab Syst 87:303–311CrossRef
24.
Zurück zum Zitat Kongsro J, Røe M, Aastveit AH, Kvaal K, Egelandsdal B (2008) Virtual dissection of lamb carcasses using computer tomography (CT) and its correlation to manual dissection. J Food Eng 88:86–93CrossRef Kongsro J, Røe M, Aastveit AH, Kvaal K, Egelandsdal B (2008) Virtual dissection of lamb carcasses using computer tomography (CT) and its correlation to manual dissection. J Food Eng 88:86–93CrossRef
25.
Zurück zum Zitat Pednekar A, Bandekar AN, Kakadiaris IA, Naghavi M (2005) Automatic segmentation of abdominal fat from CT data. Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision (WACV/MOTION’05), 2005 WACV/MOTIONS ’05 Volume 1 Seventh IEEE: pp. 308–315 Pednekar A, Bandekar AN, Kakadiaris IA, Naghavi M (2005) Automatic segmentation of abdominal fat from CT data. Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision (WACV/MOTION’05), 2005 WACV/MOTIONS ’05 Volume 1 Seventh IEEE: pp. 308–315
26.
Zurück zum Zitat Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Jpn J Radiol Technol 64:1177–1181CrossRef Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Jpn J Radiol Technol 64:1177–1181CrossRef
27.
Zurück zum Zitat McEvoy FJ, Madsen MT, Strathe AB, Svalastoga E (2008) Hounsfield unit dynamics of adipose tissue and non-adipose soft tissues in growing pigs. Res Vet Sci 84:300–304CrossRefPubMed McEvoy FJ, Madsen MT, Strathe AB, Svalastoga E (2008) Hounsfield unit dynamics of adipose tissue and non-adipose soft tissues in growing pigs. Res Vet Sci 84:300–304CrossRefPubMed
35.
Zurück zum Zitat Shahzada R, Bos D, Metz C, Rossi A, van der Lugt A, Klein S, Witteman J, de Feyter P, Niessen W, van Vliet L, van Walsum T (2013) Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Med Phys 40(9):091910. https://doi.org/10.1118/1.4817577 CrossRef Shahzada R, Bos D, Metz C, Rossi A, van der Lugt A, Klein S, Witteman J, de Feyter P, Niessen W, van Vliet L, van Walsum T (2013) Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Med Phys 40(9):091910. https://​doi.​org/​10.​1118/​1.​4817577 CrossRef
37.
Zurück zum Zitat Buzug TM (2004) Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion. Springer-Verlag, BerlinCrossRef Buzug TM (2004) Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion. Springer-Verlag, BerlinCrossRef
Metadaten
Titel
Fully automatic CT-histogram-based fat estimation in dead bodies
verfasst von
Michael Hubig
Sebastian Schenkl
Holger Muggenthaler
Felix Güttler
Andreas Heinrich
Ulf Teichgräber
Gita Mall
Publikationsdatum
01.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Legal Medicine / Ausgabe 2/2018
Print ISSN: 0937-9827
Elektronische ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-017-1757-5

Weitere Artikel der Ausgabe 2/2018

International Journal of Legal Medicine 2/2018 Zur Ausgabe

Neu im Fachgebiet Rechtsmedizin