Skip to main content
Erschienen in: Journal of Neurology 12/2013

Open Access 01.12.2013 | Letter to the Editors

Enhanced reticulospinal output in patients with (REEP1) hereditary spastic paraplegia type 31

verfasst von: K. M. Fisher, P. F. Chinnery, S. N. Baker, M. R. Baker

Erschienen in: Journal of Neurology | Ausgabe 12/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00415-013-7178-6) contains supplementary material, which is available to authorized users.
Dear Sirs,
The striking paradox of pure autosomal dominant hereditary spastic paraplegia (AD HSP), in contrast to capsular stroke or primary lateral sclerosis, for example, is that despite extensive corticospinal tract (CST) degeneration and prominent lower limb spasticity, leg weakness is not a prominent early feature of the disease. Therefore, other descending motor pathways presumably compensate for CST degeneration, though, until the recent article by Nonnekes et al. [1] in the Journal of Neurology, this assumption had remained unproven. Using startling acoustic stimuli (SAS), they showed that the reticulospinal tract (RST) is not only functioning in patients with HSP, but that it compensates for lower limb deficits of postural control caused by CST degeneration.
In most patients with pure AD HSP, electrophysiological evidence of CST disease is limited to the lumbosacral cord [2]. However, some AD HSP genotypes (e.g., SPG4) are associated with a more severe phenotype and have motor-evoked potential (MEP) abnormalities in the upper limbs [35], consistent with post-mortem evidence of CST degeneration at all levels, from the medulla to the lumbo-sacral cord [6].
We tested MEPs (see Supplementary Methods) in two patients (father and son) with SPG31 AD HSP (REEP1 exon 5 c.337C > T/p.Arg113X [7]). In patient 2 (age 42; disease duration 37 years) MEPs were ‘typical’ of pure AD HSP [8], with prolonged central motor conduction times (CMCTs) in the lower limbs (CMCT 22.2 ms) and normal CMCTs in the upper limbs. However, in patient 1 (age 68; disease duration 64 years) CMCTs were significantly prolonged in the upper limbs (Fig. 1).
Given the absence of clinical upper limb weakness in patient 1, we measured EMG onset latencies in a Start-React paradigm to see whether the RST might be compensating for the CST deficit in the upper limbs [911] (Supplementary Methods), as illustrated in Fig. 2a. Experiments had the relevant institutional ethical approval and complied with the Declaration of Helsinki, and were performed in both patients and 11 controls, aged 56–82 years. Traditionally, the effects of SAS on the visual reaction time (VRT), and the visual start-react time (VSRT), are normalized, thus:
$$ \Updelta {\text{VRT}}\left( \% \right) = \frac{{\left( {\text{VRT - VSRT}} \right)}}{\text{VRT}} \times 100. $$
(1)
The normal ∆VRT is ~50 % [9], and a ∆VRT of less than 50 % is indicative of disease affecting the RST. However, because we were interested in measuring any change in the gain of the RST output, accessed via auditory pathways, we have used a ratio that incorporates the auditory reaction time (ART) following a low-intensity sound, as follows:
$$ \Updelta T_{\text{SR}} /\Updelta T_{\text{AR}} = \frac{{ ( {\text{VRT }} - {\text{VSRT)}}}}{{ ( {\text{VRT}} - {\text{ART)}}}} $$
(2)
where ∆T SR is the shortening effect of a SAS on the visual reaction time and ∆T AR measures the shortening of reaction time provided by a non-startling auditory stimulus, which presumably does not activate RST pathways. The results of this analysis are shown in Fig. 2c, d. Patient 2, who had no evidence of cervical CST disease, had normal ∆T SR/∆T AR ratios. However, patient 1, who had MEP evidence of cervical CST disease, had significantly increased ratios, but only when measured from biceps brachii EMG, despite normal ARTs and VRTs (Supplementary Results/Fig. 2). This result supports the notion that the RST mitigates the effects of disease within the cervical CST. The RST appears to compensate by increasing its output gain by a factor of around 1.5. Although the RST does project to both proximal and distal upper limb muscles [12], the effects of SAS are only seen in distal muscles in some tasks [13], possibly explaining why we detected differences only in the biceps muscle. These observations suggest that therapeutic interventions aimed at increasing the gain of RST outputs could improve recovery from neurological disorders characterized by CST dysfunction.

Acknowledgments

This research was funded by the Wellcome Trust, the Academy of Medical Sciences, and National Institute for Health Research.

Conflicts of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Neuer Inhalt

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Nonnekes J, de Niet M, Nijhuis LB, de Bot ST, van de Warrenburg BP, Bloem BR, Geurts AC, Weerdesteyn V (2013) Mechanisms of postural instability in hereditary spastic paraplegia. J Neurol. doi:10.1007/s00415-013-7002-3 PubMed Nonnekes J, de Niet M, Nijhuis LB, de Bot ST, van de Warrenburg BP, Bloem BR, Geurts AC, Weerdesteyn V (2013) Mechanisms of postural instability in hereditary spastic paraplegia. J Neurol. doi:10.​1007/​s00415-013-7002-3 PubMed
2.
Zurück zum Zitat Lang N, Optenhoefel T, Deuschl G, Klebe S (2011) Axonal integrity of corticospinal projections to the upper limbs in patients with pure hereditary spastic paraplegia. Clin Neurophysiol 122:1417–1420PubMedCrossRef Lang N, Optenhoefel T, Deuschl G, Klebe S (2011) Axonal integrity of corticospinal projections to the upper limbs in patients with pure hereditary spastic paraplegia. Clin Neurophysiol 122:1417–1420PubMedCrossRef
3.
Zurück zum Zitat Bonsch D, Schwindt A, Navratil P, Palm D, Neumann C, Klimpe S, Schickel J, Hazan J, Weiller C, Deufel T et al (2003) Motor system abnormalities in hereditary spastic paraparesis type 4 (SPG4) depend on the type of mutation in the spastin gene. J Neurol Neurosurg Psychiatry 74:1109–1112PubMedCrossRef Bonsch D, Schwindt A, Navratil P, Palm D, Neumann C, Klimpe S, Schickel J, Hazan J, Weiller C, Deufel T et al (2003) Motor system abnormalities in hereditary spastic paraparesis type 4 (SPG4) depend on the type of mutation in the spastin gene. J Neurol Neurosurg Psychiatry 74:1109–1112PubMedCrossRef
4.
Zurück zum Zitat Schady W, Dick JP, Sheard A, Crampton S (1991) Central motor conduction studies in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 54:775–779PubMedCrossRef Schady W, Dick JP, Sheard A, Crampton S (1991) Central motor conduction studies in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 54:775–779PubMedCrossRef
5.
Zurück zum Zitat Pelosi L, Lanzillo B, Perretti A, Santoro L, Blumhardt L, Caruso G (1991) Motor and somatosensory evoked potentials in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 54:1099–1102PubMedCrossRef Pelosi L, Lanzillo B, Perretti A, Santoro L, Blumhardt L, Caruso G (1991) Motor and somatosensory evoked potentials in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 54:1099–1102PubMedCrossRef
6.
Zurück zum Zitat Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584PubMedCrossRef Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584PubMedCrossRef
7.
Zurück zum Zitat Hewamadduma C, McDermott C, Kirby J, Grierson A, Panayi M, Dalton A, Rajabally Y, Shaw P (2009) New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics 10:105–110PubMedCrossRef Hewamadduma C, McDermott C, Kirby J, Grierson A, Panayi M, Dalton A, Rajabally Y, Shaw P (2009) New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics 10:105–110PubMedCrossRef
8.
Zurück zum Zitat Polo JM, Calleja J, Combarros O, Berciano J (1993) Hereditary “pure” spastic paraplegia: a study of nine families. J Neurol Neurosurg Psychiatry 56:175–181PubMedCrossRef Polo JM, Calleja J, Combarros O, Berciano J (1993) Hereditary “pure” spastic paraplegia: a study of nine families. J Neurol Neurosurg Psychiatry 56:175–181PubMedCrossRef
9.
Zurück zum Zitat Valldeoriola F, Valls-Sole J, Tolosa E, Ventura PJ, Nobbe FA, Marti MJ (1998) Effects of a startling acoustic stimulus on reaction time in different parkinsonian syndromes. Neurology 51:1315–1320PubMedCrossRef Valldeoriola F, Valls-Sole J, Tolosa E, Ventura PJ, Nobbe FA, Marti MJ (1998) Effects of a startling acoustic stimulus on reaction time in different parkinsonian syndromes. Neurology 51:1315–1320PubMedCrossRef
10.
Zurück zum Zitat Valls-Sole J, Kumru H, Kofler M (2008) Interaction between startle and voluntary reactions in humans. Exp Brain Res 187:497–507PubMedCrossRef Valls-Sole J, Kumru H, Kofler M (2008) Interaction between startle and voluntary reactions in humans. Exp Brain Res 187:497–507PubMedCrossRef
11.
Zurück zum Zitat Rothwell JC (2005) The Startle reflex, voluntary movement, and the reticuopsinal tract. In: Cruccu G, Hallett M (eds) Brainstem Function and Dysfunction (Supplement to Clinical Neurophysiology), (Elsevier) volume 58, pp. 221–229 Rothwell JC (2005) The Startle reflex, voluntary movement, and the reticuopsinal tract. In: Cruccu G, Hallett M (eds) Brainstem Function and Dysfunction (Supplement to Clinical Neurophysiology), (Elsevier) volume 58, pp. 221–229
12.
Zurück zum Zitat Davidson AG, Buford JA (2006) Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res 173:25–39PubMedCrossRef Davidson AG, Buford JA (2006) Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res 173:25–39PubMedCrossRef
14.
Zurück zum Zitat Eisen AA, Shtybel W (1990) AAEM minimonograph #35: clinical experience with transcranial magnetic stimulation. Muscle Nerve 13:995–1011PubMedCrossRef Eisen AA, Shtybel W (1990) AAEM minimonograph #35: clinical experience with transcranial magnetic stimulation. Muscle Nerve 13:995–1011PubMedCrossRef
Metadaten
Titel
Enhanced reticulospinal output in patients with (REEP1) hereditary spastic paraplegia type 31
verfasst von
K. M. Fisher
P. F. Chinnery
S. N. Baker
M. R. Baker
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 12/2013
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-013-7178-6

Weitere Artikel der Ausgabe 12/2013

Journal of Neurology 12/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.