Skip to main content
Erschienen in: Journal of Neurology 12/2015

01.12.2015 | Review

Monogenic causes of stroke: now and the future

verfasst von: Rhea Y. Y. Tan, Hugh S. Markus

Erschienen in: Journal of Neurology | Ausgabe 12/2015

Einloggen, um Zugang zu erhalten

Abstract

Most stroke is multifactorial with multiple polygenic risk factors each conferring small increases in risk interacting with environmental risk factors, but it can also arise from mutations in a single gene. This review covers single-gene disorders which lead to stroke as a major phenotype, with a focus on those which cause cerebral small vessel disease (SVD), an area where there has been significant recent progress with findings that may inform us about the pathogenesis of SVD more broadly. We also discuss the impact that next generation sequencing technology (NGST) is likely to have on clinical practice in this area. The most common form of monogenic SVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, due to the mutations in the NOTCH3 gene. Several other inherited forms of SVD include cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, retinal vasculopathy with cerebral leukodystrophy, collagen type IV α1 and α2 gene-related arteriopathy and FOXC1 deletion related arteriopathy. These monogenic forms of SVD, with overlapping clinical phenotypes, are beginning to provide insights into how the small arteries in the brain can be damaged and some of the mechanisms identified may also be relevant to more common sporadic SVD. Despite the discovery of these disorders, it is often challenging to clinically and radiologically distinguish between syndromes, while screening multiple genes for causative mutations that can be costly and time-consuming. The rapidly falling cost of NGST may allow quicker diagnosis of these rare causes of SVD, and can also identify previously unknown disease-causing variants.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701CrossRefPubMed Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701CrossRefPubMed
2.
Zurück zum Zitat Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710CrossRefPubMed Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710CrossRefPubMed
3.
Zurück zum Zitat Razvi SSM, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76:739–741PubMedCentralCrossRefPubMed Razvi SSM, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76:739–741PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Rutten-Jacobs LC, Kilarski LL, Bevan S et al (2015) Abstract 26: Prevalence of CADASIL and Fabry Disease in a Large Cohort of MRI defined Younger onset Lacunar Stroke. Stroke 46:A26 Rutten-Jacobs LC, Kilarski LL, Bevan S et al (2015) Abstract 26: Prevalence of CADASIL and Fabry Disease in a Large Cohort of MRI defined Younger onset Lacunar Stroke. Stroke 46:A26
6.
Zurück zum Zitat Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41:630–634CrossRefPubMed Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41:630–634CrossRefPubMed
7.
Zurück zum Zitat Dichgans M, Mayer M, Uttner I et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739CrossRefPubMed Dichgans M, Mayer M, Uttner I et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739CrossRefPubMed
8.
Zurück zum Zitat Desmond DW, Moroney JT, Lynch T et al (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30:1230–1233CrossRefPubMed Desmond DW, Moroney JT, Lynch T et al (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30:1230–1233CrossRefPubMed
9.
Zurück zum Zitat Roine S, Pöyhönen M, Timonen S et al (2005) Neurologic symptoms are common during gestation and puerperium in CADASIL. Neurology 64:1441–1443CrossRefPubMed Roine S, Pöyhönen M, Timonen S et al (2005) Neurologic symptoms are common during gestation and puerperium in CADASIL. Neurology 64:1441–1443CrossRefPubMed
10.
Zurück zum Zitat Hinze S, Goonasekera M, Nannucci S et al (2015) Longitudinally extensive spinal cord infarction in CADASIL. Pract Neurol 15:60–62CrossRefPubMed Hinze S, Goonasekera M, Nannucci S et al (2015) Longitudinally extensive spinal cord infarction in CADASIL. Pract Neurol 15:60–62CrossRefPubMed
11.
Zurück zum Zitat Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259CrossRefPubMed Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259CrossRefPubMed
12.
Zurück zum Zitat O’Sullivan M, Jarosz JM, Martin RJ et al (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56:628–634CrossRefPubMed O’Sullivan M, Jarosz JM, Martin RJ et al (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56:628–634CrossRefPubMed
13.
Zurück zum Zitat Lesnik Oberstein SA, van den Boom R, van Buchem MA et al (2001) Cerebral microbleeds in CADASIL. Neurology 57:1066–1070CrossRefPubMed Lesnik Oberstein SA, van den Boom R, van Buchem MA et al (2001) Cerebral microbleeds in CADASIL. Neurology 57:1066–1070CrossRefPubMed
14.
Zurück zum Zitat Morroni M, Marzioni D, Ragno M et al (2013) Role of electron microscopy in the diagnosis of cadasil syndrome: a study of 32 patients. PLoS One 8:e65482PubMedCentralCrossRefPubMed Morroni M, Marzioni D, Ragno M et al (2013) Role of electron microscopy in the diagnosis of cadasil syndrome: a study of 32 patients. PLoS One 8:e65482PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Singhal S, Bevan S, Barrick T et al (2004) The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain 127:2031–2038CrossRefPubMed Singhal S, Bevan S, Barrick T et al (2004) The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain 127:2031–2038CrossRefPubMed
16.
Zurück zum Zitat Opherk C, Peters N, Holtmannspötter M et al (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 37:2684–2689CrossRefPubMed Opherk C, Peters N, Holtmannspötter M et al (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 37:2684–2689CrossRefPubMed
17.
Zurück zum Zitat Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20:85–93CrossRefPubMed Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20:85–93CrossRefPubMed
18.
Zurück zum Zitat Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A et al (2010) A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 75:2033–2035CrossRefPubMed Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A et al (2010) A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 75:2033–2035CrossRefPubMed
19.
Zurück zum Zitat Fukutake T, Hirayama K (1995) Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 35:69–79CrossRefPubMed Fukutake T, Hirayama K (1995) Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 35:69–79CrossRefPubMed
20.
Zurück zum Zitat Yanagawa S, Ito N, Arima K, Ikeda S-IS (2002) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 58:817–820CrossRefPubMed Yanagawa S, Ito N, Arima K, Ikeda S-IS (2002) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 58:817–820CrossRefPubMed
21.
Zurück zum Zitat Arima K, Yanagawa S, Ito N, Ikeda S (2003) Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology 23:327–334CrossRefPubMed Arima K, Yanagawa S, Ito N, Ikeda S (2003) Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology 23:327–334CrossRefPubMed
22.
Zurück zum Zitat Richards A, van den Maagdenberg AMJM, Jen JC et al (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070CrossRefPubMed Richards A, van den Maagdenberg AMJM, Jen JC et al (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070CrossRefPubMed
23.
Zurück zum Zitat Ophoff RA, DeYoung J, Service SK et al (2001) Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1–p21.3. Am J Hum Genet 69:447–453PubMedCentralCrossRefPubMed Ophoff RA, DeYoung J, Service SK et al (2001) Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1–p21.3. Am J Hum Genet 69:447–453PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat DiFrancesco JC, Novara F, Zuffardi O et al (2014) TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. doi:10.1007/s10072-014-1944-9 PubMed DiFrancesco JC, Novara F, Zuffardi O et al (2014) TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. doi:10.​1007/​s10072-014-1944-9 PubMed
25.
Zurück zum Zitat Kavanagh D, Spitzer D, Kothari PH et al (2008) New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle 7:1718–1725PubMedCentralCrossRefPubMed Kavanagh D, Spitzer D, Kothari PH et al (2008) New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle 7:1718–1725PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Pelzer N, de Vries B, Boon EMJ et al (2013) Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol 260:2188–2190CrossRefPubMed Pelzer N, de Vries B, Boon EMJ et al (2013) Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol 260:2188–2190CrossRefPubMed
27.
Zurück zum Zitat Vahedi K, Alamowitch S (2011) Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 24:63–68CrossRefPubMed Vahedi K, Alamowitch S (2011) Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 24:63–68CrossRefPubMed
28.
Zurück zum Zitat Lanfranconi S, Markus HS (2010) COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41:e513–e518CrossRefPubMed Lanfranconi S, Markus HS (2010) COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41:e513–e518CrossRefPubMed
29.
Zurück zum Zitat Gould DB, Phalan FC, van Mil SE et al (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496CrossRefPubMed Gould DB, Phalan FC, van Mil SE et al (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496CrossRefPubMed
30.
Zurück zum Zitat Vahedi K, Boukobza M, Massin P et al (2007) Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 69:1564–1568CrossRefPubMed Vahedi K, Boukobza M, Massin P et al (2007) Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 69:1564–1568CrossRefPubMed
31.
32.
Zurück zum Zitat Verbeek E, Meuwissen MEC, Verheijen FW et al (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20:844–851PubMedCentralCrossRefPubMed Verbeek E, Meuwissen MEC, Verheijen FW et al (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20:844–851PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Renard D, Miné M, Pipiras E et al (2014) Cerebral small-vessel disease associated with COL4A1 and COL4A2 gene duplications. Neurology 83:1029–1031CrossRefPubMed Renard D, Miné M, Pipiras E et al (2014) Cerebral small-vessel disease associated with COL4A1 and COL4A2 gene duplications. Neurology 83:1029–1031CrossRefPubMed
34.
Zurück zum Zitat Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335CrossRefPubMed Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335CrossRefPubMed
36.
Zurück zum Zitat Orteu CH, Jansen T, Lidove O et al (2007) Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol 157:331–337CrossRefPubMed Orteu CH, Jansen T, Lidove O et al (2007) Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol 157:331–337CrossRefPubMed
38.
Zurück zum Zitat Crutchfield KE, Patronas NJ, Dambrosia JM et al (1998) Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 50:1746–1749CrossRefPubMed Crutchfield KE, Patronas NJ, Dambrosia JM et al (1998) Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 50:1746–1749CrossRefPubMed
39.
Zurück zum Zitat Rolfs A, Böttcher T, Zschiesche M et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366:1794–1796CrossRefPubMed Rolfs A, Böttcher T, Zschiesche M et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366:1794–1796CrossRefPubMed
40.
Zurück zum Zitat Baptista MV, Ferreira S, Pinho-E-Melo T et al (2010) Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study––screening genetic conditions in Portuguese young stroke patients. Stroke 41:431–436CrossRefPubMed Baptista MV, Ferreira S, Pinho-E-Melo T et al (2010) Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study––screening genetic conditions in Portuguese young stroke patients. Stroke 41:431–436CrossRefPubMed
41.
Zurück zum Zitat Wilcox WR, Oliveira JP, Hopkin RJ et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93:112–128CrossRefPubMed Wilcox WR, Oliveira JP, Hopkin RJ et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93:112–128CrossRefPubMed
42.
Zurück zum Zitat Linthorst GE, Vedder AC, Aerts JMFG, Hollak CEM (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203CrossRefPubMed Linthorst GE, Vedder AC, Aerts JMFG, Hollak CEM (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203CrossRefPubMed
43.
Zurück zum Zitat Schiffmann R, Kopp JB, Austin HA et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749CrossRefPubMed Schiffmann R, Kopp JB, Austin HA et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749CrossRefPubMed
44.
46.
Zurück zum Zitat Delahaye A, Khung-Savatovsky S, Aboura A et al (2012) Pre- and postnatal phenotype of 6p25 deletions involving the FOXC1 gene. Am J Med Genet A 158A:2430–2438CrossRefPubMed Delahaye A, Khung-Savatovsky S, Aboura A et al (2012) Pre- and postnatal phenotype of 6p25 deletions involving the FOXC1 gene. Am J Med Genet A 158A:2430–2438CrossRefPubMed
47.
Zurück zum Zitat Cellini E, Disciglio V, Novara F et al (2012) Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. Am J Med Genet A 158A:1793–1797CrossRefPubMed Cellini E, Disciglio V, Novara F et al (2012) Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. Am J Med Genet A 158A:1793–1797CrossRefPubMed
48.
Zurück zum Zitat French CR, Seshadri S, Destefano AL et al (2014) Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest 124:4877–4881PubMedCentralCrossRefPubMed French CR, Seshadri S, Destefano AL et al (2014) Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest 124:4877–4881PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130PubMedCentralCrossRefPubMed Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Di Fede G, Giaccone G, Tagliavini F (2013) Hereditary and sporadic beta-amyloidoses. Front Biosci (Landmark Ed) 18:1202–1226CrossRef Di Fede G, Giaccone G, Tagliavini F (2013) Hereditary and sporadic beta-amyloidoses. Front Biosci (Landmark Ed) 18:1202–1226CrossRef
52.
Zurück zum Zitat Linn J, Halpin A, Demaerel P et al (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350PubMedCentralCrossRefPubMed Linn J, Halpin A, Demaerel P et al (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350PubMedCentralCrossRefPubMed
53.
54.
Zurück zum Zitat Bacskai BJ, Frosch MP, Freeman SH et al (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434CrossRefPubMed Bacskai BJ, Frosch MP, Freeman SH et al (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434CrossRefPubMed
55.
Zurück zum Zitat Baron J-C, Farid K, Dolan E et al (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34:753–758PubMedCentralCrossRefPubMed Baron J-C, Farid K, Dolan E et al (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34:753–758PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Schmidt H, Zeginigg M, Wiltgen M et al (2011) Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 134:3384–3397PubMedCentralCrossRefPubMed Schmidt H, Zeginigg M, Wiltgen M et al (2011) Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 134:3384–3397PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Oka C, Tsujimoto R, Kajikawa M et al (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131:1041–1053CrossRefPubMed Oka C, Tsujimoto R, Kajikawa M et al (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131:1041–1053CrossRefPubMed
59.
Zurück zum Zitat Shiga A, Nozaki H, Yokoseki A et al (2011) Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-1 via cleavage of proTGF- 1. Hum Mol Genet 20:1800–1810CrossRefPubMed Shiga A, Nozaki H, Yokoseki A et al (2011) Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-1 via cleavage of proTGF- 1. Hum Mol Genet 20:1800–1810CrossRefPubMed
60.
Zurück zum Zitat Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E et al (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206CrossRefPubMed Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E et al (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206CrossRefPubMed
61.
Zurück zum Zitat Gunda B, Mine M, Kovács T et al (2014) COL4A2 mutation causing adult onset recurrent intracerebral hemorrhage and leukoencephalopathy. J Neurol 261:500–503CrossRefPubMed Gunda B, Mine M, Kovács T et al (2014) COL4A2 mutation causing adult onset recurrent intracerebral hemorrhage and leukoencephalopathy. J Neurol 261:500–503CrossRefPubMed
62.
Zurück zum Zitat Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease––systematic review and meta-analysis. Neurobiol Aging 30:337–352CrossRefPubMed Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease––systematic review and meta-analysis. Neurobiol Aging 30:337–352CrossRefPubMed
64.
Zurück zum Zitat Joutel A, Vahedi K, Corpechot C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:1511–1515CrossRefPubMed Joutel A, Vahedi K, Corpechot C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:1511–1515CrossRefPubMed
65.
Zurück zum Zitat Rutten JW, Boon EMJ, Liem MK et al (2013) Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat 34:1486–1489CrossRefPubMed Rutten JW, Boon EMJ, Liem MK et al (2013) Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat 34:1486–1489CrossRefPubMed
66.
Zurück zum Zitat Ruchoux MM, Domenga V, Brulin P et al (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162:329–342PubMedCentralCrossRefPubMed Ruchoux MM, Domenga V, Brulin P et al (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162:329–342PubMedCentralCrossRefPubMed
67.
Zurück zum Zitat Joutel A, Andreux F, Gaulis S et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605PubMedCentralCrossRefPubMed Joutel A, Andreux F, Gaulis S et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605PubMedCentralCrossRefPubMed
68.
Zurück zum Zitat Duering M, Karpinska A, Rosner S et al (2011) Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 20:3256–3265CrossRefPubMed Duering M, Karpinska A, Rosner S et al (2011) Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 20:3256–3265CrossRefPubMed
69.
Zurück zum Zitat Arboleda-Velasquez JF, Manent J, Lee JH et al (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci 108:E128–E135PubMedCentralCrossRefPubMed Arboleda-Velasquez JF, Manent J, Lee JH et al (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci 108:E128–E135PubMedCentralCrossRefPubMed
70.
Zurück zum Zitat Monet-Leprêtre M, Haddad I, Baron-Menguy C et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845PubMedCentralCrossRefPubMed Monet-Leprêtre M, Haddad I, Baron-Menguy C et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845PubMedCentralCrossRefPubMed
72.
Zurück zum Zitat Kast J, Hanecker P, Beaufort N et al (2014) Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96PubMedCentralCrossRefPubMed Kast J, Hanecker P, Beaufort N et al (2014) Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96PubMedCentralCrossRefPubMed
74.
Zurück zum Zitat Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMed Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMed
75.
Zurück zum Zitat Low WC, Junna M, Börjesson-Hanson A et al (2007) Hereditary multi-infarct dementia of the Swedish type is a novel disorder different from NOTCH3 causing CADASIL. Brain 130:357–367CrossRefPubMed Low WC, Junna M, Börjesson-Hanson A et al (2007) Hereditary multi-infarct dementia of the Swedish type is a novel disorder different from NOTCH3 causing CADASIL. Brain 130:357–367CrossRefPubMed
76.
Zurück zum Zitat Nannucci S, Pescini F, Bertaccini B et al (2015) Clinical, familial, and neuroimaging features of CADASIL-like patients. Acta Neurol Scand 131:30–36CrossRefPubMed Nannucci S, Pescini F, Bertaccini B et al (2015) Clinical, familial, and neuroimaging features of CADASIL-like patients. Acta Neurol Scand 131:30–36CrossRefPubMed
77.
Zurück zum Zitat Foo J-N, Liu J-J, Tan E-K (2012) Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 8:508–517CrossRefPubMed Foo J-N, Liu J-J, Tan E-K (2012) Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 8:508–517CrossRefPubMed
78.
Zurück zum Zitat Vrijenhoek T, Kraaijeveld K, Elferink M et al (2015) Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. Eur J Hum Genet. doi:10.1038/ejhg.2014.279 Vrijenhoek T, Kraaijeveld K, Elferink M et al (2015) Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. Eur J Hum Genet. doi:10.​1038/​ejhg.​2014.​279
80.
Zurück zum Zitat Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755CrossRefPubMed Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755CrossRefPubMed
81.
Zurück zum Zitat Guerreiro R, Brás J, Hardy J, Singleton A (2014) Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 44:1–7 Guerreiro R, Brás J, Hardy J, Singleton A (2014) Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 44:1–7
Metadaten
Titel
Monogenic causes of stroke: now and the future
verfasst von
Rhea Y. Y. Tan
Hugh S. Markus
Publikationsdatum
01.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 12/2015
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-7794-4

Weitere Artikel der Ausgabe 12/2015

Journal of Neurology 12/2015 Zur Ausgabe

Pioneers in Neurology

William John Adie (1886–1935)

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.