Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 5/2015

01.05.2015 | Basic Science

The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length

verfasst von: Irene Ctori, Stephen Gruppetta, Byki Huntjens

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The purpose of this study was to assess the effects of incorporating individual ocular biometry measures of corneal curvature, refractive error, and axial length on scan length obtained using Spectralis spectral domain optical coherence tomography (SD-OCT).

Methods

Two SD-OCT scans were acquired for 50 eyes of 50 healthy participants, first using the Spectralis default keratometry (K) setting followed by incorporating individual mean-K values. Resulting scan lengths were compared to predicted scan lengths produced by image simulation software, based on individual ocular biometry measures including axial length.

Results

Axial length varied from 21.41 to 29.04 mm. Spectralis SD-OCT scan lengths obtained with default-K ranged from 5.7 to 7.3 mm, and with mean-K from 5.6 to 7.6 mm. We report a stronger correlation of simulated scan lengths incorporating the subject’s mean-K value (ρ = 0.926, P < 0.0005) compared to Spectralis default settings (ρ = 0.663, P < 0.0005).

Conclusions

Ocular magnification appears to be better accounted for when individual mean-K values are incorporated into Spectralis SD-OCT scan acquisition versus using the device’s default-K setting. This must be considered when taking area measurements and lateral measurements parallel to the retinal surface.
Literatur
1.
Zurück zum Zitat Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMed Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMed
2.
Zurück zum Zitat Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125CrossRefPubMed Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125CrossRefPubMed
3.
Zurück zum Zitat Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC (2008) Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 49:4893–4897CrossRefPubMed Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC (2008) Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 49:4893–4897CrossRefPubMed
4.
Zurück zum Zitat Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, Tearney GJ, Boer JFD (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482CrossRefPubMed Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, Tearney GJ, Boer JFD (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482CrossRefPubMed
5.
Zurück zum Zitat Regatieri CV, Branchini L, Duker JS (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42:S56CrossRefPubMedCentralPubMed Regatieri CV, Branchini L, Duker JS (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42:S56CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Oh J, Smiddy WE, Flynn HW, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658CrossRefPubMed Oh J, Smiddy WE, Flynn HW, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658CrossRefPubMed
7.
Zurück zum Zitat Mojana F, Cheng L, Bartsch D-UG, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146:218–227CrossRefPubMedCentralPubMed Mojana F, Cheng L, Bartsch D-UG, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146:218–227CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Moreno-Montañés J, Olmo N, Alvarez A, García N, Zarranz-Ventura J (2010) Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 51:335–343CrossRefPubMed Moreno-Montañés J, Olmo N, Alvarez A, García N, Zarranz-Ventura J (2010) Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 51:335–343CrossRefPubMed
10.
Zurück zum Zitat Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV, Beg MF (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 54:2864–2871CrossRefPubMed Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV, Beg MF (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 54:2864–2871CrossRefPubMed
11.
Zurück zum Zitat Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S (2012) Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 53:53–61CrossRefPubMed Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S (2012) Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 53:53–61CrossRefPubMed
12.
Zurück zum Zitat Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2009) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye 24:251–258CrossRefPubMed Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2009) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye 24:251–258CrossRefPubMed
13.
Zurück zum Zitat Folgar FA, Yuan EL, Farsiu S, Toth CA (2014) Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt 19:16014CrossRefPubMed Folgar FA, Yuan EL, Farsiu S, Toth CA (2014) Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt 19:16014CrossRefPubMed
14.
Zurück zum Zitat Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367CrossRefPubMed Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367CrossRefPubMed
15.
Zurück zum Zitat Rudnicka AR, Burk ROW, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192CrossRefPubMed Rudnicka AR, Burk ROW, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192CrossRefPubMed
16.
Zurück zum Zitat Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649CrossRefPubMedCentralPubMed Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph Stratus OCT 3000. Ophthalmic Physiol Opt 28:21–28CrossRefPubMed Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph Stratus OCT 3000. Ophthalmic Physiol Opt 28:21–28CrossRefPubMed
18.
Zurück zum Zitat Almeida MS, Carvalho LA (2007) Different schematic eyes and their accuracy to the in vivo eye: a quantitative comparison study. Braz J Phys 37:378–387CrossRef Almeida MS, Carvalho LA (2007) Different schematic eyes and their accuracy to the in vivo eye: a quantitative comparison study. Braz J Phys 37:378–387CrossRef
19.
Zurück zum Zitat Leung CK, Cheng ACK, Chong KKL, Leung KS, Mohamed S, Lau CSL, Cheung CYL, Chu GC, Lai RYK, Pang CCP, Lam DSC (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183CrossRefPubMed Leung CK, Cheng ACK, Chong KKL, Leung KS, Mohamed S, Lau CSL, Cheung CYL, Chu GC, Lai RYK, Pang CCP, Lam DSC (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183CrossRefPubMed
21.
Zurück zum Zitat Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 18:501–505CrossRefPubMedCentralPubMed Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 18:501–505CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61CrossRefPubMed Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61CrossRefPubMed
23.
Zurück zum Zitat Bayraktar S, Bayraktar Z, Yilmaz ÃF (2001) Influence of scan radius correction for ocular magnification and relationship between scan radius with retinal nerve fiber layer thickness measured by optical coherence tomography. J Glaucoma 10:163–169CrossRefPubMed Bayraktar S, Bayraktar Z, Yilmaz ÃF (2001) Influence of scan radius correction for ocular magnification and relationship between scan radius with retinal nerve fiber layer thickness measured by optical coherence tomography. J Glaucoma 10:163–169CrossRefPubMed
24.
Zurück zum Zitat Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182CrossRefPubMed Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182CrossRefPubMed
25.
Zurück zum Zitat Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634CrossRefPubMedCentralPubMed Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Hi A, Ohkubo S, Sugiyama K, Iwase A, Yoshimura N (2011) Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779CrossRefPubMed Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Hi A, Ohkubo S, Sugiyama K, Iwase A, Yoshimura N (2011) Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779CrossRefPubMed
27.
Zurück zum Zitat Kirby ML, Galea M, Loane E, Stack J, Beatty S, Nolan JM (2009) Foveal anatomic associations with the secondary peak and the slope of the macular pigment spatial profile. Invest Ophthalmol Vis Sci 50:1383–1391CrossRefPubMed Kirby ML, Galea M, Loane E, Stack J, Beatty S, Nolan JM (2009) Foveal anatomic associations with the secondary peak and the slope of the macular pigment spatial profile. Invest Ophthalmol Vis Sci 50:1383–1391CrossRefPubMed
28.
Zurück zum Zitat Menke MN, Dabov S, Knecht P, Sturm V (2009) Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 147:467–472CrossRefPubMed Menke MN, Dabov S, Knecht P, Sturm V (2009) Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 147:467–472CrossRefPubMed
29.
Zurück zum Zitat Atchinson DA, Smith G (2000) Schematic eyes. In: Optics of the human eye. Butterworth Heinemann, Oxford:pp 250–251 Atchinson DA, Smith G (2000) Schematic eyes. In: Optics of the human eye. Butterworth Heinemann, Oxford:pp 250–251
30.
Zurück zum Zitat Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724CrossRefPubMedCentralPubMed Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Nolan JM, Stringham JM, Beatty S, Snodderly DM (2008) Spatial profile of macular pigment and its relationship to foveal architecture. Invest Ophthalmol Vis Sci 49:2134–2142CrossRefPubMed Nolan JM, Stringham JM, Beatty S, Snodderly DM (2008) Spatial profile of macular pigment and its relationship to foveal architecture. Invest Ophthalmol Vis Sci 49:2134–2142CrossRefPubMed
32.
Zurück zum Zitat Verkicharla PK, Mallen EAH, Atchison DA (2013) Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci 90:215–222CrossRefPubMed Verkicharla PK, Mallen EAH, Atchison DA (2013) Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci 90:215–222CrossRefPubMed
33.
Zurück zum Zitat Lam AKC, Chan R, Pang PCK (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster™. Ophthalmic Physiol Opt 21:477–483CrossRefPubMed Lam AKC, Chan R, Pang PCK (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster™. Ophthalmic Physiol Opt 21:477–483CrossRefPubMed
34.
Zurück zum Zitat Song H, Chui TYP, Zhong Z, Elsner AE, Burns SA (2011) Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci 52:7376–7384CrossRefPubMedCentralPubMed Song H, Chui TYP, Zhong Z, Elsner AE, Burns SA (2011) Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci 52:7376–7384CrossRefPubMedCentralPubMed
35.
Zurück zum Zitat Visser N, Berendschot T, Verbakel F, de Brabander J, Nuijts R (2012) Comparability and repeatability of corneal astigmatism measurements using different measurement technologies. J Cataract Refract Surg 38:1764–1770CrossRefPubMed Visser N, Berendschot T, Verbakel F, de Brabander J, Nuijts R (2012) Comparability and repeatability of corneal astigmatism measurements using different measurement technologies. J Cataract Refract Surg 38:1764–1770CrossRefPubMed
36.
Zurück zum Zitat Pesudovs K, Weisinger HS (2004) A comparison of autorefractor performance. Optom Vis Sci 81:554–558CrossRefPubMed Pesudovs K, Weisinger HS (2004) A comparison of autorefractor performance. Optom Vis Sci 81:554–558CrossRefPubMed
37.
Zurück zum Zitat Tan JC, Poinoosawmy D, Fitzke FW, Hitchings RA (2004) Magnification changes in scanning laser tomography. J Glaucoma 13:137–141CrossRefPubMed Tan JC, Poinoosawmy D, Fitzke FW, Hitchings RA (2004) Magnification changes in scanning laser tomography. J Glaucoma 13:137–141CrossRefPubMed
38.
Zurück zum Zitat Röck T, Wilhelm B, Bartz-Schmidt KU, Röck D (2014) The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: A pilot study. Graefes Arch Clin Exp Ophthalmol 252:589–593CrossRefPubMed Röck T, Wilhelm B, Bartz-Schmidt KU, Röck D (2014) The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: A pilot study. Graefes Arch Clin Exp Ophthalmol 252:589–593CrossRefPubMed
39.
Zurück zum Zitat Patel NB, Wheat JL, Rodriguez A, Tran V, Harwerth RS (2012) Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 89:E652–E666CrossRefPubMedCentralPubMed Patel NB, Wheat JL, Rodriguez A, Tran V, Harwerth RS (2012) Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 89:E652–E666CrossRefPubMedCentralPubMed
Metadaten
Titel
The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length
verfasst von
Irene Ctori
Stephen Gruppetta
Byki Huntjens
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 5/2015
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2915-9

Weitere Artikel der Ausgabe 5/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 5/2015 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.