Skip to main content

Advertisement

Log in

Effects of intravitreally injected Fc fragment on rat eyes

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Anti-vascular endothelial growth factor (VEGF) drugs are used to treat neovascular eye diseases. Some of these drugs contain Fc fragments (Fc), but it is unknown how their mode of action is influenced by Fc. Therefore, this study investigated the effects of Fc on rat eyes after intravitreal injection.

Methods

Eighteen Long–Evans rats were intravitreally injected with sterile, biotin-labeled rat Fc (9.1 μg in 5 μl PBS). For control, 5 μl PBS was injected in another nine rats. Animals were sacrificed between 1 and 3 days (group 1), 7 days (group 2), and 14 days (group 3) after injection. The right eyes were examined by electron microscopy (EM). The left eyes were stained by immunohistochemistry to investigate the distribution of Fc and the presence of macrophages.

Results

After 1 day, Fc had penetrated into the anterior chamber and the retina up to the inner nuclear layer, and was located especially in retinal vessels. High numbers of infiltrating cells were present within the vitreous, around the ciliary body, anterior chamber and inside the retina 1–3 days after Fc injection (p < 0.02 group 1 vs. control). Immunohistochemistry and EM showed that they were macrophages or granulocytes in close association with Fc. Ultrastructurally, there were effects on the blood vessels such as thrombocyte activation and fibrin formation.

Conclusions

Biotin labeling is ideal for investigating the distribution of intravitreally injected proteins in ocular tissue. Fc fragments at a dose corresponding to their concentration in standard AMD treatments induced inflammation, and particularly the attraction of immune-competent cells. This may be associated with the risk of inflammation or endophthalmitis after anti-VEGF treatment, and needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213:228–238. doi:10.1111/j.1600-065X.2006.00430.x

    Article  CAS  PubMed  Google Scholar 

  2. Taylor AW (2009) Ocular immune privilege. Eye (Lond) 23:1885–1889. doi:10.1038/eye.2008.382

    Article  CAS  Google Scholar 

  3. Agrawal S, Joshi M, Christoforidis JB (2013) Vitreous inflammation associated with intravitreal anti-VEGF pharmacotherapy. Mediators Inflamm 2013:943409. doi:10.1155/2013/943409

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hahn P, Yashkin AP, Sloan FA (2016) Effect of prior anti-VEGF injections on the risk of retained lens fragments and endophthalmitis after cataract surgery in the elderly. Ophthalmology 123:309–315. doi:10.1016/j.ophtha.2015.06.040

    Article  PubMed  Google Scholar 

  5. Tripathi RC, Borisuth NS, Tripathi BJ (1991) Mapping of Fc gamma receptors in the human and porcine eye. Exp Eye Res 53:647–656

    Article  CAS  PubMed  Google Scholar 

  6. Julien S, Biesemeier A, Schraermeyer U (2012) In vitro induction of protein complexes between bevacizumab, VEGF-A165 and heparin: explanation for deposits observed on endothelial veins in monkey eyes. Br J Ophthalmol. doi:10.1136/bjophthalmol-2012-302308

    Google Scholar 

  7. Julien S, Biesemeier A, Taubitz T, Schraermeyer U (2014) Different effects of intravitreally injected ranibizumab and aflibercept on retinal and choroidal tissues of monkey eyes. Br J Ophthalmol 98:813–825. doi:10.1136/bjophthalmol-2013-304019

    Article  PubMed  Google Scholar 

  8. Schraermeyer U, Julien S (2013) Effects of bevacizumab in retina and choroid after intravitreal injection into monkey eyes. Expert Opin Biol Ther 13:157–167. doi:10.1517/14712598.2012.748741

    Article  CAS  PubMed  Google Scholar 

  9. Schraermeyer U, Julien S (2012) Formation of immune complexes and thrombotic microangiopathy after intravitreal injection of bevacizumab in the primate eye. Graefes Arch Clin Exp Ophthalmol 250:1303–1313. doi:10.1007/s00417-012-2055-z

    Article  CAS  PubMed  Google Scholar 

  10. Lang GE, Lang GK, Deissler HL (2015) Basic in vitro studies on VEGF inhibition with aflibercept: similarities and differences to other VEGF-binding therapeutic proteins. Klin Monbl Augenheilkd 232:295–302. doi:10.1055/s-0034-1383142

    CAS  PubMed  Google Scholar 

  11. Deissler HL, Lang GK, Lang GE (2016) Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: evidence for an involvement of the neonatal Fc receptor. Exp Eye Res 143:49–59. doi:10.1016/j.exer.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    CAS  PubMed  Google Scholar 

  13. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15:171–185. doi:10.1007/s10456-011-9249-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohr M, Kaiser PK (2012) Aflibercept in wet age-related macular degeneration: a perspective review. Ther Adv Chronic Dis 3:153–161. doi:10.1177/2040622312446007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–870. doi:10.1097/01.iae.0000242842.14624.e7

    Article  PubMed  Google Scholar 

  16. Nomura Y, Kaneko M, Miyata K, Yatomi Y, Yanagi Y (2015) Bevacizumab and Aflibercept activate platelets via FcγRIIa. Invest Ophthalmol Vis Sci 56:8075–8082. doi:10.1167/iovs.15-17814

    Article  PubMed  Google Scholar 

  17. Meyer T, Robles-Carrillo L, Robson T, Langer F, Desai H, Davila M, Amaya M, Francis JL, Amirkhosravi A (2009) Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice. J Thromb Haemost 7:171–181. doi:10.1111/j.1538-7836.2008.03212.x

    Article  CAS  PubMed  Google Scholar 

  18. Klettner AK, Kruse ML, Meyer T, Wesch D, Kabelitz D, Roider J (2009) Different properties of VEGF-antagonists: Bevacizumab but not Ranibizumab accumulates in RPE cells. Graefes Arch Clin Exp Ophthalmol 247:1601–1608. doi:10.1007/s00417-009-1136-0

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Robinson SB, Csaky KG (2009) FcRn receptor-mediated pharmacokinetics of therapeutic IgG in the eye. Mol Vis 15:2803–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dithmer M, Hattermann K, Pomarius P, Aboul Naga SH, Meyer T, Mentlein R, Roider J, Klettner A (2016) The role of Fc-receptors in the uptake and transport of therapeutic antibodies in the retinal pigment epithelium. Exp Eye Res 145:187–205. doi:10.1016/j.exer.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  21. Tolentino M (2011) Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 56:95–113. doi:10.1016/j.survophthal.2010.08.006

    Article  PubMed  Google Scholar 

  22. Schmucker C, Ehlken C, Agostini HT, Antes G, Ruecker G, Lelgemann M, Loke YK (2012) A safety review and meta-analyses of bevacizumab and ranibizumab: off-label versus goldstandard. PLoS One 7, e42701. doi:10.1371/journal.pone.0042701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Reis MI, La Heij EC, De Jong-Hesse Y, Ringens PJ, Hendrikse F, Schouten JS (2011) A systematic review of the adverse events of intravitreal anti-vascular endothelial growth factor injections. Retina 31:1449–1469. doi:10.1097/IAE.0b013e3182278ab4

    Article  PubMed  Google Scholar 

  24. Modi YS, Tanchon C, Ehlers JP (2015) Comparative safety and tolerability of anti-VEGF therapy in age-related macular degeneration. Drug Saf 38:279–293. doi:10.1007/s40264-015-0273-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schraermeyer U, Julien S, Biesemeier A, Bartz-Schmidt KU, Wolburg H (2015) A new kind of labyrinth-like capillary is responsible for leakage from human choroidal neovascular endothelium, as investigated by high-resolution electron microscopy. Graefes Arch Clin Exp Ophthalmol 253:681–689. doi:10.1007/s00417-014-2733-0

    Article  PubMed  Google Scholar 

  26. Sorensen KK, McCourt P, Berg T, Crossley C, Le Couteur D, Wake K, Smedsrod B (2012) The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 303:R1217–R1230. doi:10.1152/ajpregu.00686.2011

    Article  PubMed  Google Scholar 

  27. Niu N, Zhang J, Sun Y, Wang S, Sun Y, Korteweg C, Gao W, Gu J (2011) Expression and distribution of immunoglobulin G and its receptors in an immune privileged site: the eye. Cell Mol Life Sci 68:2481–2492. doi:10.1007/s00018-010-0572-7

    Article  CAS  PubMed  Google Scholar 

  28. Joshi T, Butchar JP, Tridandapani S (2006) Fcgamma receptor signaling in phagocytes. Int J Hematol 84:210–216. doi:10.1532/IJH97.06140

    Article  CAS  PubMed  Google Scholar 

  29. Nomura S, Shimizu M (2015) Clinical significance of procoagulant microparticles. J Intensive Care 3:2. doi:10.1186/s40560-014-0066-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Monika Rittgarn and Sigrid Schultheiss for technical assistance and Judith Birch for proofreading. This study was supported by Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Biesemeier.

Ethics declarations

Funding

Novartis provided financial support in the form of research grant funding. The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; or expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taubitz, T., Steinbrenner, LP., Tschulakow, A.V. et al. Effects of intravitreally injected Fc fragment on rat eyes. Graefes Arch Clin Exp Ophthalmol 254, 2401–2409 (2016). https://doi.org/10.1007/s00417-016-3511-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3511-y

Keywords

Navigation