Skip to main content

Advertisement

Log in

Combined VEGF and PDGF inhibition for neovascular AMD: anti-angiogenic properties of axitinib on human endothelial cells and pericytes in vitro

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Drugs currently approved for neovascular age-related macular degeneration (nAMD) offer anti-VEGF monotherapy only. Platelet-derived growth factor (PDGF) signaling is pivotal to pericyte-induced stabilization of choroidal neovascularizations (CNV), and causes partial anti-VEGF resistance. No combination therapy for VEGF and PDGF has been approved yet. Axitinib is a tyrosine kinase inhibitor interfering with VEGF and PDGF signaling, and has been approved for the treatment of renal cell carcinoma. This study evaluates anti-angiogenic properties of axitinib in an in-vitro model of choroidal neovascularizations in nAMD.

Methods

Human endothelial cells (HUVEC) and human pericytes (hPC-PL) were treated with axitinib doses ranging from 1.0 ng/ml to 10 μg/ml. Cellular viability and proliferation were assessed with a modified MTT assay. VEGF- and PDGF-stimulated migration was observed in modified Boyden chambers. Formation of capillary structures was evaluated on Cultrex basement membrane.

Results

Proliferation was significantly inhibited in both cell lines in a dose-dependent manner. VEGF and PDGF significantly induced, whereas simultaneous axitinib normalized cellular migration in HUVEC and pericytes. On growth-factor-reduced Cultrex, VEGF induced the formation of capillary structures, while axitinib significantly reverted this effect. Axitinib reduced the amount of vessel associated tissue on full growth factor Cultrex. All effects on both cell lines were observed in non-toxic concentrations of axitinib.

Conclusions

Axitinib inhibits angiogenesis in endothelial cells and pericytes via VEGFR and PDGFR modulation in vitro. Further studies are needed to elucidate whether axitinib may also improve therapy of CNV in AMD in vivo by interference with pericyte stabilization of pathological vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  2. Bressler NM (2004) Age-related macular degeneration is the leading cause of blindness. JAMA 291(15):1900–1901

    Article  CAS  PubMed  Google Scholar 

  3. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82(11):844–851

    PubMed  PubMed Central  Google Scholar 

  4. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2(2):e106–e116

    Article  PubMed  Google Scholar 

  5. Guyer DR, Fine SL, Maguire MG, Hawkins BS, Owens SL, Murphy RP (1986) Subfoveal choroidal neovascular membranes in age-related macular degeneration. Visual prognosis in eyes with relatively good initial visual acuity. Arch Ophthalmol 104(5):702–705

    Article  CAS  PubMed  Google Scholar 

  6. Otani A, Takagi H, Oh H, Koyama S, Ogura Y, Matumura M, Honda Y (2002) Vascular endothelial growth factor family and receptor expression in human choroidal neovascular membranes. Microvasc Res 64(1):162–169

    Article  CAS  PubMed  Google Scholar 

  7. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113(12):1538–1544

    Article  CAS  PubMed  Google Scholar 

  8. Kvanta A, Algvere PV, Berglin L, Seregard S (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37(9):1929–1934

    CAS  PubMed  Google Scholar 

  9. Frank RN, Amin RH, Eliott D, Puklin JE, Abrams GW (1996) Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 122(3):393–403

    Article  CAS  PubMed  Google Scholar 

  10. Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT (1997) Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol 81(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431

    Article  CAS  PubMed  Google Scholar 

  12. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–1444

    Article  CAS  PubMed  Google Scholar 

  13. Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364(20):1897–1908

    Article  CAS  PubMed  Google Scholar 

  14. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119(12):2537–2548

    Article  PubMed  Google Scholar 

  15. Krebs I, Glittenberg C, Ansari-Shahrezaei S, Hagen S, Steiner I, Binder S (2013) Non-responders to treatment with antagonists of vascular endothelial growth factor in age-related macular degeneration. Br J Ophthalmol 97(11):1443–1446

    Article  PubMed  Google Scholar 

  16. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K (2013) Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120(11):2292–2299

    Article  PubMed  Google Scholar 

  17. Muether PS, Neuhann I, Buhl C, Hermann MM, Kirchhof B, Fauser S (2013) Intraocular growth factors and cytokines in patients with dry and neovascular age-related macular degeneration. Retina 33(9):1809–1814

    Article  CAS  PubMed  Google Scholar 

  18. Jaffe GJ, Eliott D, Wells JA, Prenner JL, Papp A, Patel S (2016) A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology 123(1):78–85

    Article  PubMed  Google Scholar 

  19. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304(5921):35–39

    Article  CAS  PubMed  Google Scholar 

  20. Betsholtz C, Johnsson A, Heldin CH, Westermark B, Lind P, Urdea MS, Eddy R, Shows TB, Philpott K, Mellor AL et al (1986) cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature 320(6064):695–699

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, Backstrom G, Hellstrom M, Bostrom H, Li H, Soriano P, Betsholtz C, Heldin CH, Alitalo K, Ostman A, Eriksson U (2000) PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol 2(5):302–309

    Article  CAS  PubMed  Google Scholar 

  22. LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA, Sullivan C, Boldog FL, Yang M, Vernet C, Burgess CE, Fernandes E, Deegler LL, Rittman B, Shimkets J, Shimkets RA, Rothberg JM, Lichenstein HS (2001) PDGF-D, a new protease-activated growth factor. Nat Cell Biol 3(5):517–521

    Article  CAS  PubMed  Google Scholar 

  23. Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kazlauskas A (1996) Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 16(10):5905–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. Faseb j 18(2):338–340

    CAS  PubMed  Google Scholar 

  25. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125(9):1591–1598

    CAS  PubMed  Google Scholar 

  26. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    CAS  PubMed  Google Scholar 

  27. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112(8):1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  CAS  PubMed  Google Scholar 

  29. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    Article  CAS  PubMed  Google Scholar 

  30. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franco M, Roswall P, Cortez E, Hanahan D, Pietras K (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118(10):2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343

    Article  CAS  PubMed  Google Scholar 

  33. Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316

    Article  CAS  PubMed  Google Scholar 

  34. Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–1028

    Article  CAS  PubMed  Google Scholar 

  35. Holz FG, Korobelnik JF, Lanzetta P, Mitchell P, Schmidt-Erfurth U, Wolf S, Markabi S, Schmidli H, Weichselberger A (2010) The effects of a flexible visual acuity-driven ranibizumab treatment regimen in age-related macular degeneration: outcomes of a drug and disease model. Invest Ophthalmol Vis Sci 51(1):405–412

    Article  PubMed  Google Scholar 

  36. Gerding H (2014) Ranibizumab treatment in age-related macular degeneration: a meta-analysis of one-year results. Klin Monatsbl Augenheilkd 231(4):427–431

    Article  CAS  PubMed  Google Scholar 

  37. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9):1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, Robinson GS, Adamis AP, Shima DT (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168(6):2036–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giddabasappa A, Lalwani K, Norberg R, Gukasyan HJ, Paterson D, Schachar RA, Rittenhouse K, Klamerus K, Mosyak L, Eswaraka J (2016) Axitinib inhibits retinal and choroidal neovascularization in in vitro and in vivo models. Exp Eye Res 145:373–379

    Article  CAS  PubMed  Google Scholar 

  40. Kelly RJ, Rixe O (2010) Axitinib (AG-013736). Recent Results Cancer Res 184:33–44

    Article  CAS  PubMed  Google Scholar 

  41. Lowe J, Araujo J, Yang J, Reich M, Oldendorp A, Shiu V, Quarmby V, Lowman H, Lien S, Gaudreault J, Maia M (2007) Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp Eye Res 85(4):425–430

    Article  CAS  PubMed  Google Scholar 

  42. Carneiro A, Falcao M, Pirraco A, Milheiro-Oliveira P, Falcao-Reis F, Soares R (2009) Comparative effects of bevacizumab, ranibizumab and pegaptanib at intravitreal dose range on endothelial cells. Exp Eye Res 88(3):522–527

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters. Proc Natl Acad Sci U S A 108(20):8287–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63

    Article  CAS  PubMed  Google Scholar 

  45. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115(3):453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  47. Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269(41):25646–25654

    CAS  PubMed  Google Scholar 

  48. Bakall B, Folk JC, Boldt HC, Sohn EH, Stone EM, Russell SR, Mahajan VB (2013) Aflibercept therapy for exudative age-related macular degeneration resistant to bevacizumab and ranibizumab. Am J Ophthalmol 156(1):15–22.e11

    Article  CAS  PubMed  Google Scholar 

  49. Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wickman GR, Amundson K, Chen JH, Rewolinski DA, Yamazaki S, Wu EY, McTigue MA, Murray BW, Kania RS, O'Connor P, Shalinsky DR, Bender SL (2008) Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 14(22):7272–7283

    Article  CAS  PubMed  Google Scholar 

  50. Chang FC, Chou YH, Chen YT, Lin SL (2012) Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc 111(11):589–598

    Article  CAS  PubMed  Google Scholar 

  51. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140

    Article  CAS  PubMed  Google Scholar 

  52. Rini BI, Schiller JH, Fruehauf JP, Cohen EE, Tarazi JC, Rosbrook B, Bair AH, Ricart AD, Olszanski AJ, Letrent KJ, Kim S, Rixe O (2011) Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res 17(11):3841–3849

    Article  CAS  PubMed  Google Scholar 

  53. Avery RL (2014) What is the evidence for systemic effects of intravitreal anti-VEGF agents, and should we be concerned? Br J Ophthalmol 98(Suppl 1):i7–i10

    Article  PubMed  Google Scholar 

  54. Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, Couvillion S, Nasir MA, Rabena MD, Le K, Maia M, Visich JE (2014) Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol 98(12):1636–1641

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thiele S, Liegl RG, Konig S, Siedlecki J, Langer J, Eibl K, Haritoglou C, Kampik A, Kernt M (2013) Multikinase inhibitors as a new approach in neovascular age-related macular degeneration (AMD) treatment: in vitro safety evaluations of axitinib, pazopanib and sorafenib for intraocular use. Klin Monatsbl Augenheilkd 230(3):247–254

    Article  CAS  PubMed  Google Scholar 

  56. Kernt M, Thiele S, Liegl RG, Kernt B, Eibl K, Haritoglou C, Ulbig MW, Kampik A (2012) Axitinib modulates hypoxia-induced blood–retina barrier permeability and expression of growth factors. Growth Factors 30(1):49–61

    Article  CAS  PubMed  Google Scholar 

  57. Kang S, Roh CR, Cho WK, Park KC, Yang KJ, Choi HS, Kim SH, Roh YJ (2013) Antiangiogenic effects of axitinib, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, on laser-induced choroidal neovascularization in mice. Curr Eye Res 38(1):119–127

    Article  CAS  PubMed  Google Scholar 

  58. Grossniklaus HE, Green WR (1998) Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Arch Ophthalmol 116(6):745–749

    Article  CAS  PubMed  Google Scholar 

  59. Hinton DR, He S, Lopez PF (1998) Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch Ophthalmol 116(2):203–209

    Article  CAS  PubMed  Google Scholar 

  60. Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15(4):255–273

    Article  CAS  PubMed  Google Scholar 

  61. Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242(1):91–101

    Article  CAS  PubMed  Google Scholar 

  62. Akiyama H, Kachi S, Silva RL, Umeda N, Hackett SF, McCauley D, McCauley T, Zoltoski A, Epstein DM, Campochiaro PA (2006) Intraocular injection of an aptamer that binds PDGF-B: a potential treatment for proliferative retinopathies. J Cell Physiol 207(2):407–412

    Article  CAS  PubMed  Google Scholar 

  63. Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL, Huang J, Ying GS, Hagstrom SA, Winter K, Maguire MG (2014) Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121(3):656–666

    Article  PubMed  Google Scholar 

  64. Ishikawa K, Kannan R, Hinton DR (2016) Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res 142:19–25

    Article  CAS  PubMed  Google Scholar 

  65. Bloch SB, Lund-Andersen H, Sander B, Larsen M (2013) Subfoveal fibrosis in eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab. Am J Ophthalmol 156(1):116–124.e1

    Article  CAS  PubMed  Google Scholar 

  66. Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, Bucana CD, McMahon G, Gallick GE, Ellis LM (2001) Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 15(7):1239–1241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was presented at the 29th annual meeting of the German Retina Society in Berlin in June 2016, for which the first author (JS) received a travel grant. Part of this work was presented at the 133th annual meeting of the DOG in Berlin in October 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Siedlecki.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Financial interest

Jakob Siedlecki: NONE, Christian Wertheimer: NONE; Armin Wolf: NONE; Raffael Liegl: NONE; Claudia Priglinger: NONE; Siegfried Priglinger: NONE; Kirsten Eibl-Lindner: NONE

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siedlecki, J., Wertheimer, C., Wolf, A. et al. Combined VEGF and PDGF inhibition for neovascular AMD: anti-angiogenic properties of axitinib on human endothelial cells and pericytes in vitro. Graefes Arch Clin Exp Ophthalmol 255, 963–972 (2017). https://doi.org/10.1007/s00417-017-3595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3595-z

Keywords

Navigation