Skip to main content
Log in

Association of metalloproteinases, tissue inhibitors of matrix metalloproteinases, and proteoglycans with development, aging, and osteoarthritis processes in mouse temporomandibular joint

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The temporomandibular joint (TMJ) is an important growth and articulation center in the craniofacial complex. In aging it develops spontaneous degenerative osteoarthritic (OA) lesions. Metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPS) play key roles in extracellular matrix remodeling and degradation. Gelatinase activities and immunohistochemical localization of MMP-2, -3, -8, -9, and -13 and TIMP-1 and -2 were examined in mandibular condyle cartilage of neonatal mice up to 18 months old. The most intense immunostaining for all enzymes and TIMPs and the peak of gelatinase activities were found in animals in the stages of early growth (1 week to 3 months) followed by a decrease during maturation and aging. However, clusters of positively immunoreactive chondrocytes were detected in cartilages of old animals displaying OA lesions. Positive safranin-O staining, indicative of sulfated proteoglycans (PGs), was prominent in the TMJ of newborn mice up to 3 months old followed by reduction during maturation and aging, except in regions displaying OA lesions. Temporal codistribution of PGs, MMPs, and TIMPs during skeletal maturation reflected an active growth phase, whereas their reduction coincided with the more quiescent articulating and maintenance phase in the joint cartilage. Osteoarthritic lesions were associated with both increased PG synthesis and MMP immunoreactivity, indicating limited repair activity during initial stages of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D.
Fig. 2A–H.
Fig. 3A–G.
Fig. 4A–I.
Fig. 5.

Similar content being viewed by others

References

  • Aigner T, McKenna L (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci 59:5–18

    Article  Google Scholar 

  • Apte SS, Hayashi K, Seldin MF, Mattei MG, Hayashi M, Olsen BR (1994) Gene encoding a novel murine tissue inhibitor of metalloproteinases (TIMP), TIMP-3, is expressed in developing mouse epithelia, cartilage and muscle, and is located on mouse chromosome 10. Dev Dyn 200:177–179

    CAS  PubMed  Google Scholar 

  • Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, Decarlo A (1993) Matrix metalloproteinases: a review. Crit Oral Biol Med 4:197–250

    CAS  Google Scholar 

  • Blumenfeld I, Laufer D, Livne E (1997) Effects of transforming growth factor-beta 1 and interleukin-1 alpha on matrix synthesis in osteoarthritic cartilage of the temporomandibular joint in aged mice. Mech Ageing Dev 95:101–111

    Article  CAS  PubMed  Google Scholar 

  • Brama PA, TeKoppele JM, Beekman B, Weeren PR van, Barneveld A (1998) Matrix metalloproteinases activity in equine synovial fluid: influence of age, osteoarthritis and osteochondrosis. Ann Rheum Dis 57:697–699

    CAS  PubMed  Google Scholar 

  • Brama PA, TeKoppele JM, Beekman B, El B van, Barneveld A, Weeren PR van (2000) Influence of development and joint pathology on stromelysin enzyme activity in equine synovial fluid. Ann Rheum Dis 59:155–157

    Article  CAS  PubMed  Google Scholar 

  • Breckon JJ, Hembry RM, Reynolds JJ, Meikle MC (1994) Regional and temporal changes in the synthesis of matrix metalloproteinases and TIMP-1 during development of the rabbit mandibular condyle. J Anat 184:99–110

    CAS  PubMed  Google Scholar 

  • Caterson B, Flannery CR, Hughes CE, Little CB (2000) Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol 19:333–344

    Article  CAS  PubMed  Google Scholar 

  • Chambers MG, Cox L, Chong L, Suri N, Cover P, Bayliss MT, Mason M (2001) Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of osteoarthritic lesions in STR/ort mice. Arthritis Rheum 44:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Chin JR, Werb Z (1997) Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in mandibular arch. Development 124:1519–1530

    CAS  PubMed  Google Scholar 

  • Chubinskaya S, Kuettner KE, Cole AA (1999) Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. Lab Invest 79:1669–1677

    CAS  PubMed  Google Scholar 

  • Flannelly J, Chamber MG, Dudia J, Hembry RM, Murphy G, Mason RM, Bayliss MT (2002) Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis. Osteoarthritis Cartilage 10:722–733

    Article  CAS  PubMed  Google Scholar 

  • Gack S, Vallon R, Schmidt J, Grigorrriadis A, Tuckermann J, Schenkel J, Weither H, Wagner EE, Angel P (1995) Expression of interstitial collagenase during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ 6:759–767

    CAS  PubMed  Google Scholar 

  • Gepstein A, Shapiro S, Arbel G, Lahat N, Livne E (2002) Expression of metalloproteinases in articular cartilage of temporomandibular and knee joints of mice during growth, maturation, and aging. Arthritis Rheum 46:3240–3250

    Article  CAS  PubMed  Google Scholar 

  • Goldberg VM, Norby DP, Sachs BL, Moskowitz RW, Malemud CJ (1984) Correlation of histopathology and sulfated proteoglycans in human osteoarthritic hip cartilage. J Orthop Res 1:302–312

    CAS  PubMed  Google Scholar 

  • Gosh P, Smith M (2002) Osteoarthritis, genetics and molecular mechanisms. Biogerontology 3:85–88

    Article  PubMed  Google Scholar 

  • Huebner JL, Otterness IG, Freund EM, Caterson B, Kraus V (1998) Collagenase 1 and collagenase 3 expression in a guinea pig model of osteoarthritis. Arthritis Rheum 41:877–890

    Article  CAS  PubMed  Google Scholar 

  • Hulth A, Lindberg L, Telhang H (1972) Mitosis in human osteoarthritis cartilage. Clin Orthop 84:197–199

    CAS  PubMed  Google Scholar 

  • Janusz MJ, Hookfin EB, Heitmeyer SA, Woessner JF, Freemont AJ, Hoyland JA, Brown KK, Hsieh LC, Almstead NG, De B, Natchus NG, Pikul S, Taiwo YO (2001) Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage 9:751–760

    Article  CAS  PubMed  Google Scholar 

  • Joronen K, Salminen H, Glumoff V, Savonataus M, Vuorio E (2000) Temporospatial expression of tissue inhibitors of metalloproteinases-1, -2 and -3 during development, growth and aging of the mouse skeleton. Histochem Cell Biol 114:157–165

    CAS  PubMed  Google Scholar 

  • Kammermann JR, Kincaid SA, Rumph PF, Baird DK, Visco DM (1996) Tumor necrosis factor-alpha (TNF-alpha) in canine osteoarthritis: immunolocalization of TNF-alpha, stromelysin and TNF-receptors in canine. Osteoarthritic Cartilage 4:23–34

    CAS  Google Scholar 

  • Kanyama M, Kuboki T, Kojima S, Fujisawa T, Hattori T, Takigawa M, Yamashita A (2000) Matrix metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J Orofac Pain 14:20–30

    CAS  PubMed  Google Scholar 

  • Kubota E, Immamura H, Kubota T, Shibata T, Murakami K (1997) Interleukin 1 beta and stromelysin (MMP3) activity of synovial fluid as possible markers of osteoarthritis in the temporomandibular joint. J Oral Maxillofac Surg 55:20–27

    CAS  PubMed  Google Scholar 

  • Kubota E, Kubota T, Matsumoto J, Shibata T, Murakami K (1998) Synovial fluid cytokines and proteinases as markers of temporomandibular joint disease. J Oral Maxillofac Surg 56:192–198

    CAS  PubMed  Google Scholar 

  • Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer II, Donatelli SA, Weinder JR, Williams HR, Mumford RA, Lohmander LS (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100:93–106

    CAS  PubMed  Google Scholar 

  • Livne E (1994) Matrix synthesis in mandibular condylar cartilage of aging mice. Osteoarthritis Cartilage 2:187–197

    CAS  PubMed  Google Scholar 

  • Livne E, Silbermann M (1986) Further characterization of spontaneous arthritic changes in murine squamo-mandibular joint: histopathological aspects. Histol Histopathol 1:161–170

    CAS  PubMed  Google Scholar 

  • Livne E, Weis A, Silberman M (1990) Changes in growth pattern in mouse condylar cartilage associated with skeletal maturation and senescence. Growth Dev Aging 54:183–193

    CAS  PubMed  Google Scholar 

  • Mattot V, Raes MB, Henriet P, Eckhout Y, Stehelin D, Vandenbunder B, Desbiens X (1995) Expression of interstitial collagenase is restricted to skeletal tissue during mouse embryogenesis. J Cell Sci 108:529–535

    CAS  PubMed  Google Scholar 

  • Merhaban F, Lark M, Ahmed FN, Xu F, Moskowitz RW (1998) Increased secretion and activity of matrix metalloproteinase-3 in synovial tissues and chondrocytes from experimental osteoarthritis. Osteoarthritis Cartilage 6:286–294

    Article  PubMed  Google Scholar 

  • Meurs J van, Lent P van, Holthuysen A, Singer I, Bayne E, Berg W van den (1999) Kinetics of aggrecanase- and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum 42:1128–1139

    Article  PubMed  Google Scholar 

  • Mitrovic D, Quintero M, Stankovic A, Ryckewaert A (1983) Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest 49:309–316

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Ishimaru J, Kurita K, Goss AN (2002) Synovial matrix metalloproteinase-2 in different stages of sheep temporomandibular joint osteoarthritis. J Oral Maxillofac Surg 60:66–72

    Article  PubMed  Google Scholar 

  • Okada Y, Shinmei M, Tanaka O, Naka K, Kimura A, Nakanishi I, Bayliss MT, Iwata K, Nagase H (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest 66:680–690

    CAS  PubMed  Google Scholar 

  • Price JS, Chambers MG, Poole AR, Fradin A, Mason RM (2002) Comparison of collagenase-cleaved articular cartilage collagen in mice in the naturally occurring STR/ort model of osteoarthritis and in collagen-induced arthritis. Osteoarthritis Cartilage 10:172–179

    Article  CAS  PubMed  Google Scholar 

  • Puzas JE, Landeau JM, Tallent R, Albright J, Schwarz EM, Landesberg R (2001) Degradative pathways in tissues of the temporomandibular joint. Use of in vitro and in vivo models to characterize matrix metalloproteinase and cytokine activity. Cell Tissues Organs 169:248–56

    Article  CAS  Google Scholar 

  • Reynolds JJ (1996) Collagenases and tissue inhibitors of metalloproteinases: a function balance in tissue degradation. Oral Dis 2:70–76

    CAS  PubMed  Google Scholar 

  • Rothwell AG, Bently G (1973) Chondrocytes multiplication in osteoarthritic articular cartilage. J Bone Joint Surg 55:588–594

    CAS  Google Scholar 

  • Ryu J, Treadwell BV, Mankin HJ (1984) Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage. Arthritis Rheum 27:49–57

    CAS  PubMed  Google Scholar 

  • Sasano Y, Zhu JX, Tsubota M, Takahashi I, Onodera K, Mizoguchi I, Kagayama M (2002) Gene expression of MMP8 and MMP13 during embryogenesis of bone and cartilage in the rat mandible and hind limb. J Histochem Cytochem 50:325–332

    CAS  PubMed  Google Scholar 

  • Shlopov BV, Lie W-R, Mainardi CL, Cole AA, Chubinskaya S, Harty KA (1997) Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum 40:2065–2074

    CAS  PubMed  Google Scholar 

  • Tanaka A, Kawashiri S, Kumagai S, Takatsuka S, Narinobou M, Nakagawa K, Tanaka S (2000) Expression of matrix metalloproteinase-2 in osteoarthritic fibrocartilage from human mandibular condyle. J Oral Pathol Med 29:314–320

    Article  CAS  PubMed  Google Scholar 

  • Tetlow LC, Adlam DJ, Wooley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage. Associations with degenerative changes. Arthritis Rheum 44:585–594

    Article  CAS  PubMed  Google Scholar 

  • Van de Loo FAJ, Joosten LAB, Lent P van, Arntz OJ, Berg WB van den (1995) Role of interleukin-1, tumor necrosis factor α and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 38:164–172

    PubMed  Google Scholar 

  • Walter H, Kawashima A, Nebelung W, Neumann W, Rossner A (1998) Immunohistochemical analysis of several enzymes as parameters of cartilage degradation. Pathol Res Pract 194:73–81

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by European Grant QLRT 1999-02072

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erella Livne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gepstein, A., Arbel, G., Blumenfeld, I. et al. Association of metalloproteinases, tissue inhibitors of matrix metalloproteinases, and proteoglycans with development, aging, and osteoarthritis processes in mouse temporomandibular joint. Histochem Cell Biol 120, 23–32 (2003). https://doi.org/10.1007/s00418-003-0544-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0544-1

Keywords

Navigation