Skip to main content
Log in

Thyroid hormone receptor α1–β1 expression in epididymal epithelium from euthyroid and hypothyroid rats

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The objectives of the present work were to assess whether epithelial cells from the different segments of epididymis express TRα1–β1 isoforms, to depict its subcellular immunolocalization and to evaluate changes in their expression in rats experimentally submitted to a hypothyroid state by injection of 131I. In euthyroid and hypothyroid groups, TR protein was expressed in epididymal epithelial cells, mainly in the cytoplasmic compartment while only a few one showed a staining in the nucleus as well. A similar TR immunostaining pattern was detected in the different segments of the epididymis. In hypothyroid rats, the number of TR-immunoreactive epithelial cells as well as the intensity of the cytoplasmic staining significantly increased in all sections analyzed. In consonance to the immunocytochemical analysis, the expression of TRα1–β1 isoforms, assessed by Western blot revealed significantly higher levels of TR in cytosol compared to the nuclear fractions. Furthermore, TR expression of both α1 and β1 isoforms and their mRNA levels were increased by the hypothyroid state. The immuno-electron-microscopy showed specific reaction for TR in principal cells associated with eucromatin, cytosolic matrix and mitochondria. The differences in expression levels assessed in control and thyroidectomized rats ascertain a specific function of TH on this organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alkemade A, Vuijst CL, Unmehopa UA, Bakker O, Vennstrom B, Wiersinga W, Swaab DF, Fliers E (2005) Thyroid hormone receptor expression in the human hypothalamus and anterior pituitary. J Clin Endocrinol Metab 90:904–912

    Article  PubMed  CAS  Google Scholar 

  • Ariyaratne H, Mason J, Mendis-Handagama S (2000a) Effects of triiodothyronine on testicular interstitial cells and androgen secretory capacity of the prepubertal rat. Biol Reprod 63:493–502

    PubMed  CAS  Google Scholar 

  • Ariyaratne H, Mason J, Mendis-Handagama S (2000b) Effects of thyroid and luteinizing hormone on the onset of precursor cell differentiation into Leydig progenitor cells in the prepubertal rat testis. Biol Reprod 63:898–904

    Article  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore DD, Seidman J, Smith J, Struhl K (eds) (1996) Current protocols in molecular biology: transfection of DNA into eucaryotic cells. Wiley, New York, p 9.1.1

    Google Scholar 

  • Bassett J, Harvey C, Williams G (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213:1–11

    Article  PubMed  CAS  Google Scholar 

  • Bauman C, Maruvana P, Hager G, Yen P (2001) Nuclear cytoplasmic shuttling by thyroid hormone receptors. J Biol Chem 276:11237–11245

    Article  Google Scholar 

  • Beaudet M, Desrochers M, Lachaud A, Anderson A (2005) The CYP2B2 phenobarbital response unit contains binding sites for hepatocyte nuclear factor 4, PBX-PREP1, the thyroid hormone receptor beta and the liver X receptor. Biochem J 388:407–418

    Article  PubMed  CAS  Google Scholar 

  • Bergh J, Lin H, Lansing L, Mohamed S, Davis F, Mousa S, Davis P (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  PubMed  CAS  Google Scholar 

  • Buzzard J, Wreford N, Morrison J (2003) Thyroid hormone, retinoic acid, and testosterone suppress proliferation and induce markers of differentiation in cultured rat Sertoli cells. Endocrinology 144:3722–3731

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Kambe F, Moeller LC, Refetoff S, Seo H (2005) Thyroid Hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol Endocrinol 19:102–112

    Article  PubMed  CAS  Google Scholar 

  • Casas F, Domenjoud L, Rochard P, Hatier R, Rodier A, Daury L, Bianchi A, Kremarik-Bouillaud P, Becuwe P, Keller J, Schohn H, Wrutniak-Cabello C, Cabello G, Dauca M (2000) A 45 kDa protein related to PPARgamma2, induced by peroxisome proliferators, is located in the mitochondrial matrix. FEBS Lett 478:4–8

    Article  PubMed  CAS  Google Scholar 

  • Casas F, Daury L, Grandemange S, Busson M, Seyer P, Hatier R, Carazo A, Cabello G, Wrutniak-Cabello C (2003) Endocrine regulation of mitochondrial activity: involvement of truncated RXRalpha and c-Erb Aalpha1 proteins. FASEB J 17:426–436

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanato–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Chamba A, Neuberger J, Strain A, Hopkins J, Sheppard M, Franklyn J (1996) Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver. J Clin Endocrinol Metab 81:360–367

    Article  PubMed  CAS  Google Scholar 

  • Constantinou C, Margarity M, Valcana T (2005) Region-specific effects of hypothyroidism on the relative expression of thyroid hormone receptors in adult rat brain. Mol Cell Biochem 278:93–100

    Article  PubMed  CAS  Google Scholar 

  • Cooke P (1991) Thyroid hormone and testis development: a model system for increasing testis growth and sperm production. Ann NY Acad Sci 637:122–132

    Article  PubMed  CAS  Google Scholar 

  • Cooke P, Meisami E (1991) Early hypothyroidism in rats causes increased adult testis and reproductive organ size but does not change testosterone levels. Endocrinology 129:237–243

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Ryter-Norgard J (1983) Light microscopic visualization of colloidal gold on resin-embedded tissue. J Histochem Cytochem 31:1394–1398

    PubMed  CAS  Google Scholar 

  • D’Arezzo S, Incerpi S, Davis F, Acconcia F, Marino M, Farias R, Davis P (2004) Rapid nongenomic effects of 3,5,3′-triiodo-l-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145:5694–5703

    Article  PubMed  CAS  Google Scholar 

  • Davis P, Davis F (2003) Nongenomic actions of thyroid hormone. In: Braverman LE (ed) Contemporary endocrinology: diseases of the thyroid, 2nd edn. Humana Press, Totowa, pp 19–37

    Google Scholar 

  • Del Rio A, Quirós M (1983) Thyroid gland and epididymal function in rats II sperm motile efficiency. Arch Androl 11:25–28

    Article  PubMed  Google Scholar 

  • Del Rio A, Blanco A, Pignataro O, Niepomniszcze H, Juvenal G, Pisarev M (2000) High-affinity binding of T3 to epididymis nuclei. Arch Androl 44:187–191

    Article  PubMed  Google Scholar 

  • Del Rio A, Palaoro L, Canessa O, Blanco A (2003) Epididymal cytology changes in hypothyroid rats. Arch Androl 49:247–255

    Article  PubMed  Google Scholar 

  • Diekman M, Zandieh Doulabi B, Platvoet-Ter Schiphorst M, Fliers E, Bakker O, Wiersinga W (2001) The biological relevance of THR in immortalized human umbilical vein endothelial cells. J Endocrinol 168:427–433

    Article  PubMed  CAS  Google Scholar 

  • Ercan-Fang S, Schwartz H, Oppenheimer J (1996) Isoform-specific 3,5,3′-triiodothyronine receptor binding capacity and messenger ribonucleic acid content in rat adenohypophysis: effect of thyroidal state and comparison with extrapituitary tissues. Endocrinology 137:3228–3233

    Article  PubMed  CAS  Google Scholar 

  • Forrest D, Vennström B (2000) Functions of thyroid hormone receptors in mice. Thyroid 10:41–52

    PubMed  CAS  Google Scholar 

  • Hager G, Lim C, Elbi C, Baumann C (2000) Trafficking of nuclear receptors in living cells. J Steroid Biochem Mol Biol 74:249–254

    Article  PubMed  CAS  Google Scholar 

  • Hardy M, Sharma R, Arambepola N, Sottas C, Russell L, Bunick D, Hess R, Cooke P (1996) Increased proliferation of Leydig cells induced by neonatal hypothyroidism in the rat. J Androl 17:231–238

    PubMed  CAS  Google Scholar 

  • Harvey C, Williams G (2002) Mechanism of thyroid hormone action. Thyroid 12:441–446

    Article  PubMed  CAS  Google Scholar 

  • Holsberger D, Cooke P (2005) Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res 322:133–140

    Article  PubMed  CAS  Google Scholar 

  • Holsberger D, Jirawatnotai S, Kiyokawa H, Cooke PS (2003) Thyroid hormone regulates the cell cycle inhibitor p27Kip1 in postnatal murine Sertoli cells. Endocrinology 144:3732–3738

    Article  PubMed  CAS  Google Scholar 

  • Holsberger D, Kiesewetter S, Cooke P (2005) Regulation of neonatal Sertoli cell development by thyroid hormone receptor (alpha)1. Biol Reprod 73:396–403

    Article  PubMed  CAS  Google Scholar 

  • Jervis K, Robaire B (2001) Dynamic changes in gene expression along the rat epididymis. Biol Reprod 65:696–703

    Article  PubMed  CAS  Google Scholar 

  • Jones R (1998) Plasma membrane structure and remodelling during sperm maturation in the epididymis. J Reprod Fertil Suppl 53:197–210

    Google Scholar 

  • Kala N, Ravisankar B, Govindarajulu P, Aruldhas MM (2002) Impact of foetal-onset hypothyroidism on the epididymis of mature rats. Int J Androl 25(3):139–148

    Article  PubMed  CAS  Google Scholar 

  • Kreuzer KA, Lass U, Landt O, Nitsche A, Laser J, Ellerbrok H, Pauli G, Huhn D, Schmidt CA (1999) Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem 45:297–300

    PubMed  CAS  Google Scholar 

  • Kirchhoff C (1999) Gene expression in the epididymis. Int Rev Cytol 188:133–202

    Article  PubMed  CAS  Google Scholar 

  • Maran R, Priyadarsini D, Udhayakumar R, Arunakaran J, Aruldhas M (2001) Differential effect of hyperthyroidism on rat epididymal glycosidases. Int J Androl 24:206–215

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Arrieta C, Morte B, Coloma A, Bernal J (1999) The human RC3 gene homolog, NRGN contains a thyroid hormone-responsive element located in the first intron. Endocrinology 140:335–343

    Article  Google Scholar 

  • Maruvada P, Baumann C, Hager G, Yen P (2003) Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem 278:12425–12432

    Article  PubMed  CAS  Google Scholar 

  • Mendis-Handagama S, Ariyaratne H (2001) Differentiation of the adult leydig cell population in the postnatal testis. Biol Reprod 65:660–671

    Article  PubMed  CAS  Google Scholar 

  • Mendis-Handagama S, Ariyaratne H (2004) Effects of thyroid hormones on Leydig cells in the postnatal testis. Histol Histopathol 19:985–997

    PubMed  CAS  Google Scholar 

  • Mendis-Handagama S, Ariyaratne H, Teunissen van Manen K, Haupt R (1998) Differentiation of adult Leydig cells in the neonatal rat testis is arrested by hypothyroidism. Biol Reprod 59:351–357

    Article  PubMed  CAS  Google Scholar 

  • Menegaz D, Zamoner A, Royer C, Leite L, Bortolotto Z, Silva F (2006) Rapid responses to thyroxine in the testis: active protein synthesis-independent pathway. Mol Cell Endocrinol 246:128–134

    Article  PubMed  CAS  Google Scholar 

  • Moeller L, Cao X, Dumitrescu A, Seo H, Refetoff S (2006) Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl Recept Signal 4:e020

    PubMed  Google Scholar 

  • Montesinos M, Pellizas CG, Vélez M, Susperreguy S, Masini-Repiso A, Coleoni AH (2006) Thyroid hormone receptor β1 gene expression is increased by dexamethasone at transcriptional level in rat liver. Life Sci 78:2584–2594

    Article  PubMed  CAS  Google Scholar 

  • Morrish F, Buroker N, Ge M, Ning X, Lopez-Guisa J, Hockenbery D, Portman M (2006) Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA. Mitochondrion 6:143–148

    Article  PubMed  CAS  Google Scholar 

  • Mukdsi J, De Paul A, Muñoz S, Aoki A, Torres A (2004) The immunolocalization of Pit-1 in gonadotroph nuclei is indicative of transdiffferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen. Histochem Cell Biol 121:453–462

    Article  PubMed  CAS  Google Scholar 

  • Nicoll J, Gwinn B, Iwig J, Garcia P, Bunn F, Allison L (2003) Compartment-specific phosphorylation of rat thyroid hormone receptor alpha1 regulates nuclear localization and retention. Mol Cell Endocrinol 205:65–77

    Article  PubMed  CAS  Google Scholar 

  • Oncu M, Kavakli D, Gokcimen A, Gulle K, Orhan H, Karaoz E (2004) Investigation on the histopathological effects of thyroidectomy on the seminiferous tubules of immature and adult rats. Urol Int 73:59–64

    Article  PubMed  Google Scholar 

  • Psarra A, Solakidi S, Sekeris C (2006) The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol 246:21–33

    Article  PubMed  CAS  Google Scholar 

  • Robaire B, Hermo L (1988) Efferent ducts, epididymis, and vas deferens: structure, functions, and their regulation. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press, New York, pp 999–1080

    Google Scholar 

  • Sato I, Miyado M, Miwa Y, Sunohara M (2006) Expression of nuclear and mitochondrial thyroid hormone receptors in postnatal rat tongue muscle. Cells Tissues Organs 183:195–205

    Article  PubMed  CAS  Google Scholar 

  • Scheller K, Sekeris E (2003) The effects of steroid hormones on the transcription of genes encoding enzymes of oxidative phosphorylation. Exp Physiol 88:129–140

    Article  PubMed  CAS  Google Scholar 

  • Serre V, Robaire B (1998) Segment-specific morphological changes in aging Brown Norway rat epididymis. Biol Reprod 58:497–513

    Article  PubMed  CAS  Google Scholar 

  • Siebler T, Robson H, Bromley M, Stevens D, Shalet S, Williams G (2002) Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow. Bone 30:259–266

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre N, Dufresne J, Rooney A, Cyr D (2003) Neonatal hypothyroidism alters the localization of gap junctional protein connexin 43 in the testis and messenger RNA levels in the epididymis of the rat. Biol Reprod 68:1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Stoykov I, Zandieh-Doulabi B, Moorman A, Christoffels V, Wiersinga W, Bakker O (2006) Expression pattern and ontogenesis of thyroid hormone receptor isoforms in the mouse heart. J Endocrinol 189:231–245

    Article  PubMed  CAS  Google Scholar 

  • Sugawara A, Yen P, Darling D, Chin W (1993) Characterization and tissue expression of multiple triiodothyronine receptor-auxiliary proteins and their relationship to the retinoid X receptors. Endocrinology 133:965–971

    Article  PubMed  CAS  Google Scholar 

  • Susperreguy S, Miras M, Montesinos M, Mascanfroni I, Muñoz L, Sobrero G, Silvano L, Masini-Repiso A, Coleoni A, Targovnik H, Pellizas C (2007) Growth hormone treatment reduces peripheral thyroid hormone action in girls with Turner Syndrome. Clin Endocrinol (Oxf) 67:629–636

    CAS  Google Scholar 

  • Tagami T, Nakamura H, Sasaki S, Miyoshi Y, Imura H (1993) Estimation of the protein content of thyroid hormone receptor α1 and β1 in rat tissues by Western blotting. Endocrinology 138:275–279

    Article  Google Scholar 

  • Teerds K, de Rooij D, de Jong F, van Haaster L (1998) Development of the adult type Leydig cells cell population in the rat is affected by neonatal thyroid hormone levels. Biol Reprod 59:344–350

    Article  PubMed  CAS  Google Scholar 

  • Weitzel J, Iwen K, Seitz H (2003) Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 88:121–128

    Article  PubMed  CAS  Google Scholar 

  • Wrutniak C, Cassar-Malek I, Marchal S, Rascle A, Heusser S, Keller JM, Fléchon J, Dauça M, Samarut J, Ghysdael J (1995) A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270:16347–16354

    Article  PubMed  CAS  Google Scholar 

  • Wrutniak-Cabello C, Casas F, Cabello G (2001) Thyroid hormone action in mitochondria. J Mol Endocrinol 26:67–77

    Article  PubMed  CAS  Google Scholar 

  • Wrutniak-Cabello C, Grandemange S, Seyer P, Busson M, Carazo A, Cabello G (2002) Study of thyroid hormone action on mitochondria opens up a new field of research: mitochondrial endocrinology. Curr Opin Endocrinol Diabetes 9:387–392

    Article  CAS  Google Scholar 

  • Yen P (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    PubMed  CAS  Google Scholar 

  • Yin L, Zhang Y, Hillgartner F (2002) Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase-alpha transcription in hepatocytes. J Biol Chem 277:19554–19565

    Article  PubMed  CAS  Google Scholar 

  • Zandieh Doulabi B, Platvoet-Ter Schiphorst M, Van beeren H, Labruyere W, Lamers W, Fliers E, Bakker O, Wiersinga W (2002) TRβ1 protein is preferentially expressed in the pericentral zone of rat liver and exhibits marked diurnal variation. Endocrinology 143:979–984

    Article  PubMed  Google Scholar 

  • Zandieh-Doulabi B, Platvoet-ter Schiphorst M, Kalsbeek A, Wiersinga WM, Bakker O (2004) Hyper and hypothyroidism change the expression and diurnal variation of thyroid hormone receptor isoforms in rat liver without major changes in their zonal distribution. Mol Cell Endocrinol 219:69–75

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Hanover J, Hager G, Cheng S (1998) Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J Biol Chem 273:27058–27063

    Article  PubMed  CAS  Google Scholar 

  • Zinke A, Schmoll D, Zachmann M, Schmoll J, Junker H, Grempler R, Kirsch G, Walther R (2003) Expression of thyroid hormone receptor isoform alpha1 in pancreatic islets. Exp Clin Endocrinol Diabetes 111:198–202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Mercedes Guevara for her excellent technical assistance. We are particularly indebted to Biochem. Félix D. Roth for his precious help in computer imaging. We would also like to thank native speaker Dr. Paul Hobson for revising the English of the manuscript. This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondos para la Investigación Científica y Tecnológica (FONCyT) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Inés Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Paul, A.L., Mukdsi, J.H., Pellizas, C.G. et al. Thyroid hormone receptor α1–β1 expression in epididymal epithelium from euthyroid and hypothyroid rats. Histochem Cell Biol 129, 631–642 (2008). https://doi.org/10.1007/s00418-008-0397-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0397-8

Keywords

Navigation