Skip to main content
Log in

Calcium regulation by thermo- and osmosensing transient receptor potential vanilloid channels (TRPVs) in human conjunctival epithelial cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid (TRPV) channels respond to polymodal stresses to induce pain, inflammation and tissue fibrosis. In this study, we probed for their functional expression in human conjunctival epithelial (HCjE) cells and ex vivo human conjunctivas. Notably, patients suffering from dry eye syndrome experience the same type of symptomology induced by TRPV channel activation in other ocular tissues. TRPV gene and protein expression were determined by RT-PCR and immunohistochemistry in HCjE cells and human conjunctivas (body donors). The planar patch-clamp technique was used to record nonselective cation channel currents. Ca2+ transients were monitored in fura-2 loaded cells. Cultivated HCjE cells and human conjunctiva express TRPV1, TRPV2, and TRPV4 mRNA. TRPV1 and TRPV4 localization was identified in human conjunctiva. Whereas the TRPV1 agonist capsaicin (CAP) (5–20 μM) -induced Ca2+ transients were blocked by capsazepine (CPZ) (10 μM), the TRPV4 activator 4α-PDD (10 μM) -induced Ca2+ increases were reduced by ruthenium-red (RuR) (20 μM). Different heating (<40°C or >43°C) led to Ca2+ increases, which were also reduced by RuR. Hypotonic challenges of either 25 or 50% induced Ca2+ transients and nonselective cation channel currents. In conclusion, conjunctiva express TRPV1, TRPV2, and TRPV4 channels which may provide novel drug targets for dry eye therapeutics. Their usage may have fewer side effects than those currently encountered with less selective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adcock JJ (2009) TRPV1 receptors in sensitisation of cough and pain reflexes. Pulm Pharmacol Ther 22:65–70

    Article  PubMed  CAS  Google Scholar 

  • Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36:614–621

    PubMed  CAS  Google Scholar 

  • Bach G (2005) Mucolipin 1: endocytosis and cation channel–a review. Pflugers Arch 451:313–317

    Article  PubMed  CAS  Google Scholar 

  • Barabino S, Dana MR (2007) Dry eye syndromes. Chem Immunol Allergy 92:176–184

    Article  PubMed  CAS  Google Scholar 

  • Bender FL, Mederos YS, Li Y, Ji A, Weihe E, Gudermann T, Schafer MK (2005) The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell Physiol Biochem 15:183–194

    Article  PubMed  CAS  Google Scholar 

  • Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Nat Acad Sci USA 108:2563–2568

    Article  PubMed  CAS  Google Scholar 

  • Bräuer L, Kindler C, Jager K, Sel S, Nolle B, Pleyer U, Ochs M, Paulsen FP (2007) Detection of surfactant proteins A and D in human tear fluid and the human lacrimal system. Invest Ophthalmol Vis Sci 48:3945–3953

    Article  PubMed  Google Scholar 

  • Bruggemann A, Stoelzle S, George M, Behrends JC, Fertig N (2006) Microchip technology for automated and parallel patch-clamp recording. Small 2:840–846

    Article  PubMed  Google Scholar 

  • Bruggemann A, Farre C, Haarmann C, Haythornthwaite A, Kreir M, Stoelzle S, George M, Fertig N (2008) Planar patch clamp: advances in electrophysiology. Methods Mol Biol 491:165–176

    Article  PubMed  Google Scholar 

  • Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51:2252–2262

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Chow J, Norng M, Zhang J, Chai J (2007) TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells–Mechanisms behind a possible new “hot” cancer treatment. Biochim Biophys Acta 1773:565–576

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24:5177–5182

    Article  PubMed  CAS  Google Scholar 

  • Diebold Y, Calonge M, de Enriquez SA, Callejo S, Corrales RM, Saez V, Siemasko KF, Stern ME (2003) Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Invest Ophthalmol Vis Sci 44:4263–4274

    Article  PubMed  Google Scholar 

  • Ducret T, Guibert C, Marthan R, Savineau JP (2008) Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells. Cell Calcium 43:315–323

    Article  PubMed  CAS  Google Scholar 

  • Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17

    Article  PubMed  CAS  Google Scholar 

  • Farris RL, Stuchell RN, Mandel ID (1981) Basal and reflex human tear analysis. I. Physical measurements: osmolarity, basal volumes, and reflex flow rate. Ophthalmology 88:852–857

    PubMed  CAS  Google Scholar 

  • Fertig N, Blick RH, Behrends JC (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys J 82:3056–3062

    Article  PubMed  CAS  Google Scholar 

  • Garreis F, Schlorf T, Worlitzsch D, Steven P, Brauer L, Jager K, Paulsen FP (2010) Roles of human beta-defensins in innate immune defense at the ocular surface: arming and alarming corneal and conjunctival epithelial cells. Histochem Cell Biol 134:59–73

    Article  PubMed  CAS  Google Scholar 

  • Garreis F, Gottschalt M, Schlorf T, Glaser R, Harder J, Worlitzsch D, Paulsen FP (2011) Expression and regulation of antimicrobial peptide psoriasin (S100A7) at the ocular surface and in the lacrimal apparatus. Invest Ophthalmol Vis Sci 52:4914–4922

    Article  PubMed  CAS  Google Scholar 

  • Gayton JL (2009) Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol 3:405–412

    Article  PubMed  Google Scholar 

  • Gilbard JP, Farris RL, Santamaria J (1978) Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol 96:677–681

    Article  PubMed  CAS  Google Scholar 

  • Gipson IK (1983). The Cornea. In: Smolin G, Thoft RA, (eds). The Cornea: scientific foundations and clinical practice. Little, Brown and Company, Boston, MA. p. 3–23

  • Gipson IK (2004) Distribution of mucins at the ocular surface. Exp Eye Res 78:379–388

    Article  PubMed  CAS  Google Scholar 

  • Gipson IK, Argüeso P, Beuerman R, Bonini S, Butovich I, Dana R, Dartt DA, Gamache DA, Ham B, Jumblatt M, Korb D, Kruse FE, Ogawa Y, Paulsen F, Stern ME, Sweeney DF, Tiffany JM, Ubels J, Willcox M (2007) Research in dry eye: report of the Research Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5:179–193

    Article  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Gu Q, Lin RL, Hu HZ, Zhu MX, Lee LY (2005) 2-aminoethoxydiphenyl borate stimulates pulmonary C neurons via the activation of TRPV channels. Am J Physiol Lung Cell Mol Physiol 288:L932–L941

    Article  PubMed  CAS  Google Scholar 

  • Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Kohler R (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE 2:e827

    Article  PubMed  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279:35741–35748

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278

    Article  PubMed  CAS  Google Scholar 

  • Johnson ME, Murphy PJ (2004) Changes in the tear film and ocular surface from dry eye syndrome. Prog Retin Eye Res 23:449–474

    Article  PubMed  Google Scholar 

  • Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26:1495–1502

    Article  PubMed  Google Scholar 

  • Kolar SS, McDermott AM (2011) Role of host-defence peptides in eye diseases. Cell Mol Life Sci 68:2201–2213

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  PubMed  CAS  Google Scholar 

  • Leffler A, Linte RM, Nau C, Reeh P, Babes A (2007) A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. Eur J Neurosci 26:12–22

    Article  PubMed  Google Scholar 

  • Lemp MA, Baudouin C, Baum J, Dogru M, Foulks GN, Kinoshita S, Laibson P, McCulley J, Murube J, Pflugfelder SC, Roalndo M, Toda I (2007) The definition and classification of dry eye disease: report of the epidemiology subcommittee of the international dry eye workshop. Ocul Surf 5:93–107

    Article  Google Scholar 

  • Liedtke W (2005) TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 451:176–180

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16

    Article  PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298:H466–H476

    Article  PubMed  CAS  Google Scholar 

  • Mergler S, Valtink M, Coulson-Thomas VJ, Lindemann D, Reinach PS, Engelmann K, Pleyer U (2010) TRPV channels mediate temperature-sensing in human corneal endothelial cells. Exp Eye Res 90:758–770

    Article  PubMed  CAS  Google Scholar 

  • Mergler S, Garreis F, Sahlmuller M, Reinach PS, Paulsen F, Pleyer U (2011a) Thermosensitive transient receptor potential channels in human corneal epithelial cells. J Cell Physiol 226:1828–1842

    Article  PubMed  CAS  Google Scholar 

  • Mergler S, Valtink M, Taetz K, Sahlmuller M, Fels G, Reinach PS, Engelmann K, Pleyer U (2011b) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. Exp Eye Res 93:710–719

    Article  PubMed  CAS  Google Scholar 

  • Mergler S, Cheng Y, Skosyrsky S, Garreis F, Pietrzak P, Kociok N, Dwarakanath A, Reinach PS, Kakkassery V (2012a) Altered calcium regulation by thermo-sensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res 94:157–173

    Article  PubMed  CAS  Google Scholar 

  • Mergler S, Skrzypski M, Sassek M, Pietrzak P, Pucci C, Wiedenmann B, Strowski MZ (2012b) Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells. Cell Signal 24:233–246

    Article  PubMed  CAS  Google Scholar 

  • Milligan CJ, Li J, Sukumar P, Majeed Y, Dallas ML, English A, Emery P, Porter KE, Smith AM, McFadzean I, Beccano-Kelly D, Bahnasi Y, Cheong A, Naylor J, Zeng F, Liu X, Gamper N, Jiang LH, Pearson HA, Peers C, Robertson B, Beech DJ (2009) Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nat Protoc 4:244–255

    Article  PubMed  CAS  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

  • Nakahiro M, Arakawa O, Narahashi T, Ukai S, Kato Y, Nishinuma K, Nishimura T (1992) Dimethyl sulfoxide (DMSO) blocks GABA-induced current in rat dorsal root ganglion neurons. Neurosci Lett 138:5–8

    Article  PubMed  CAS  Google Scholar 

  • Narayanan S, Miller WL, McDermott AM (2003) Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye disease. Invest Ophthalmol Vis Sci 44:3795–3801

    Article  PubMed  Google Scholar 

  • Nilius B, Owsianik G (2010) Channelopathies converge on TRPV4. Nat Genet 42:98–100

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Watanabe H, Vriens J (2003) The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflugers Arch 446:298–303

    PubMed  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  • Numazaki M, Tominaga M (2004) Nociception and TRP Channels. Curr Drug Targets CNS Neurol Disord 3:479–485

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Reinach PS, Shirai K, Kitano A, Winston W, Kao Y, Flanders KC, Miyajima M, Liu H, Zhang J, Saika S (2011) TRPV1 involvement in the inflammatory tissue fibrosis in mice. Am J Pathol 178:2654–2664

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Natl Rev Mol Cell Biol 4:552–565

    Article  CAS  Google Scholar 

  • Pamir E, George M, Fertig N, Benoit M (2008) Planar patch-clamp force microscopy on living cells. Ultramicroscopy 108:552–557

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Yang H, Mergler S, Liu H, Tachado SD, Zhang F, Kao WW, Koziel H, Pleyer U, Reinach PS (2008) Dependence of regulatory volume decrease on transient receptor potential vanilloid 4 (TRPV4) expression in human corneal epithelial cells. Cell Calcium 44:374–385

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Wang Z, Yang H, Zhang F, Reinach PS (2011) TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Invest Ophthalmol Vis Sci 52:485–493

    Article  PubMed  CAS  Google Scholar 

  • Paulsen FP, Berry MS (2006) Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem 41:1–53

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  PubMed  CAS  Google Scholar 

  • Pflugfelder SC (2004) Antiinflammatory therapy for dry eye. Am J Ophthalmol 137:337–342

    Article  PubMed  Google Scholar 

  • Pingle SC, Matta JA, Ahern GP (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 155–171

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  • Sappington RM, Sidorova T, Long DJ, Calkins D (2009) TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca2+ with Exposure to Hydrostatic Pressure. Invest Ophthalmol Vis Sci 50:717–728

    Article  PubMed  Google Scholar 

  • Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215

    Article  PubMed  CAS  Google Scholar 

  • Silva GB, Garvin JL (2008) TRPV4 mediates hypotonicity-induced ATP release by the thick ascending limb. Am J Physiol Renal Physiol 295:F1090–F1095

    Article  PubMed  CAS  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Albeitz J, Begley C, Caffery B, Nichols K, Schaumberg D, Schein O (2007) The epidemilogy of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul Surf 5:75–92

    Article  Google Scholar 

  • Stern ME, Pflugfelder SC (2004) Inflammation in dry eye. Ocul Surf 2:124–130

    Article  PubMed  Google Scholar 

  • Talluri RS, Hariharan S, Karla PK, Mitra AK (2009) Drug delivery to cornea and conjunctiva: esterase- and protease-directed prodrug design. In: Dartt DA (ed) Encyclopedia of the Eye. Elsevier, Oxford, pp 247–253

    Google Scholar 

  • Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropa noyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamid e (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326:432–442

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M (2010) Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1. Yakugaku Zasshi 130:289–294

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  • Tomlinson A, Khanal S, Ramaesh K, Diaper C, McFadyen A (2006) Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci 47:4309–4315

    Article  PubMed  Google Scholar 

  • Vay L, Gu C, McNaughton PA (2012) The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol 165:787–801

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  • Vincent F, Duncton MA (2011) TRPV4 Agonists and Antagonists. Curr Top Med Chem

  • Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004a) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004b) TRPM6 forms the Mg2 + influx channel involved in intestinal and renal Mg2 + absorption. J Biol Chem 279:19–25

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Nat Acad Sci USA 101:396–401

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002a) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002b) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Gao X, Brown RC, Heller S, O’Neil RG (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293:F1699–F1713

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Gordon E, Lin Z, Lozinskaya IM, Chen Y, Thorneloe KS (2009) Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly isolated, guinea-pig urothelial cells. Channels (Austin) 3:156–160

    Article  CAS  Google Scholar 

  • Yamada T, Ueda T, Ugawa S, Ishida Y, Imayasu M, Koyama S, Shimada S (2010) Functional expression of transient receptor potential vanilloid 3 (TRPV3) in corneal epithelial cells: involvement in thermosensation and wound healing. Exp Eye Res 90:121–129

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Mergler S, Sun X, Wang Z, Lu L, Bonanno JA, Pleyer U, Reinach PS (2005) TRPC4 knockdown suppresses EGF-induced store operated channel activation and growth in human corneal epithelial cells. J Biol Chem 280:32230–32237

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wang Z, Capo-Aponte JE, Zhang F, Pan Z, Reinach PS (2010) Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells. Exp Eye Res 91:462–471

    Article  PubMed  CAS  Google Scholar 

  • Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC (2003) Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci 44:124–129

    Article  PubMed  Google Scholar 

  • Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Yang H, Wang Z, Mergler S, Liu H, Kawakita T, Tachado SD, Pan Z, Capo-Aponte JE, Pleyer U, Koziel H, Kao WW, Reinach PS (2007) Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. J Cell Physiol 213:730–739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The human, spontaneously immortalized epithelial cell line from normal human conjunctiva (HCjE; IOBA-NHC) was kindly provided by Yolanda Diebold, University Institute of Applied Ophthalmobiology [IOBA], University of Valladolid, Valladolid, Spain). The SV40-transformed human corneal epithelial (HCE) cells were kindly provided by Kaoru Araki-Sasaki (Tane Memorial Eye Hospital, Osaka, Japan). The authors thank Norbert Kociok for helpful discussions as well as Gabriele Fels for technical assistance. This study was supported by Charité research founds and in part by DFG Pl 150/14-1 and PA 738/9-2 as well as by Pharm-Allergan GmbH (Ettlingen, Germany). The planar patch-clamp setup was supported in part by Berliner Sonnenfeld-Stiftung. Peter Reinach was supported by EY04795 and Department of Defense (W81XWH-09-2-0162). Finally, we appreciate very much the technical assistance provided by fellow students Frauke Harlis, Lena Paschke, Arina Riabinska and Nefeli Slavi during their lab rotation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mergler.

Additional information

F. Garreis and S. Mergler contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mergler, S., Garreis, F., Sahlmüller, M. et al. Calcium regulation by thermo- and osmosensing transient receptor potential vanilloid channels (TRPVs) in human conjunctival epithelial cells. Histochem Cell Biol 137, 743–761 (2012). https://doi.org/10.1007/s00418-012-0924-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0924-5

Keywords

Navigation