Skip to main content

Advertisement

Log in

Melanoma cell-derived factors stimulate hyaluronan synthesis in dermal fibroblasts by upregulating HAS2 through PDGFR-PI3K-AKT and p38 signaling

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In many cancers hyaluronan content is increased, either by tumor cells or the surrounding stromal cells and this increased hyaluronan content correlates with unfavorable clinical prognosis. In the present work, we studied the effects of melanoma cell (aggressive melanoma cell line C8161)-derived factors on fibroblast hyaluronan synthesis, intracellular signaling, MMP expression and invasion. Treatment of the fibroblast cultures with melanoma cell conditioned medium (CM) caused accumulation of hyaluronan in the culture medium and formation of thick pericellular hyaluronan coat and hyaluronan cables. The expression of Has2 was increased approximately 20-fold by the C8161 melanoma cell CM, while Has1 and Has3 were increased twofold. Knock-down of Has2 expression with siRNA showed that Has2 was responsible for the increased hyaluronan synthesis induced by the melanoma cell CM. To find out the signaling routes, which led to Has2 upregulation, the phosphorylation profiles of 46 kinases were screened with phosphokinase array kit. Melanoma cell CM treatment strongly induced a rapid phosphorylation of p38, JNK, AKT, CREB, HSP27, STAT3 and cJUN. Treatment of the fibroblasts with specific inhibitors of PI3K, AKT and p38 reduced the melanoma cell CM-induced hyaluronan secretion, while the inhibitor of PDGFR totally blocked it. In addition, siRNA for PDGFRα/β inhibited Has2 upregulation in melanoma cell CM-treated fibroblasts. In parallel with the increased hyaluronan synthesis the melanoma cell CM-treated fibroblasts showed spindle shape, numerous long cell protrusions, enhanced MMP expression and increased invasion into collagen-Cultrex matrix. siRNA blocking of Has2 or PDGFRα/β expression reversed the stimulatory effect of melanoma cell CM on fibroblast invasion. PDGF secreted by melanoma cells thus mediated fibroblasts activation, with HAS2 upregulation as a major factor in the fibroblast response. This effect on stromal matrix is suggested to favor tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CM:

Conditioned medium

ECM:

Extracellular matrix

bHABC:

Biotinylated hyaluronan binding complex

ELSA:

Enzyme-linked sorbent assay

HAS:

Hyaluronan synthase

References

  • Andre B, Duterme C, Van Moer K, Mertens-Strijthagen J, Jadot M, Flamion B (2011) Hyal2 is a glycosylphosphatidylinositol-anchored, lipid raft-associated hyaluronidase. Biochem Biophys Res Commun 411:175–179

    Article  PubMed  CAS  Google Scholar 

  • Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM (2000) Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 156:529–536

    Article  PubMed  CAS  Google Scholar 

  • Averbeck M, Gebhardt CA, Voigt S, Beilharz S, Anderegg U, Termeer CC, Sleeman JP, Simon JC (2007) Differential regulation of hyaluronan metabolism in the epidermal and dermal compartments of human skin by UVB irradiation. J Invest Dermatol 127:687–697

    Article  PubMed  CAS  Google Scholar 

  • Bernert B, Porsch H, Heldin P (2011) Hyaluronan synthase 2 (Has2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J Biol Chem 286:42349–42359

    Article  PubMed  CAS  Google Scholar 

  • Che ZM, Jung TH, Choi JH, Yoon do J, Jeong HJ, Lee EJ, Kim J (2006) Collagen-based co-culture for invasive study on cancer cells-fibroblasts interaction. Biochem Biophys Res Commun 346:268–275

    Article  PubMed  CAS  Google Scholar 

  • Chow G, Tauler J, Mulshine JL (2010) Cytokines and growth factors stimulate hyaluronan production: role of hyaluronan in epithelial to mesenchymal-like transition in non-small cell lung cancer. J Biomed Biotechnol 2010:485468

    Article  PubMed  Google Scholar 

  • David-Raoudi M, Deschrevel B, Leclercq S, Galera P, Boumediene K, Pujol JP (2009) Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and Akt. Arthr Rheum 60:760–770

    Article  CAS  Google Scholar 

  • de la Motte CA, Hascall VC, Calabro A, Yen-Lieberman B, Strong SA (1999) Mononuclear leukocytes preferentially bind via CD44 to hyaluronan on human intestinal mucosal smooth muscle cells after virus infection or treatment with polyIC. J Biol Chem 274:30747–30755

    Article  Google Scholar 

  • de la Motte CA, Hascall VC, Drazba J, Bandyopadhyay SK, Strong SA (2003) Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function. Am J Pathol 163:121–133

    Article  PubMed  Google Scholar 

  • Ducale AE, Ward SI, Dechert T, Yager DR (2005) Regulation of hyaluronan synthase-2 expression in human intestinal mesenchymal cells: mechanisms of interleukin-1beta-mediated induction. Am J Physiol Gastrointest Liver Physiol 289:G462–G470

    Article  PubMed  CAS  Google Scholar 

  • Duncan MR, Berman B (1991) Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J Invest Dermatol 97:686–692

    Article  PubMed  CAS  Google Scholar 

  • Edward M, Gillan C, Micha D, Tammi RH (2005) Tumour regulation of fibroblast hyaluronan expression: a mechanism to facilitate tumour growth and invasion. Carcinogenesis 26:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Edward M, Quinn JA, Pasonen-Seppanen SM, McCann BA, Tammi RH (2010) 4-Methylumbelliferone inhibits tumour cell growth and the activation of stromal hyaluronan synthesis by melanoma cell-derived factors. Br J Dermatol 162:1224–1232

    Article  PubMed  CAS  Google Scholar 

  • Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen EL, Anttila M, Kultti A, Ropponen K, Penttinen J, Yliskoski M, Kuronen AT, Juhola M, Tammi R, Tammi M, Kosma VM (2002) Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors. Cancer Res 62:6410–6413

    PubMed  CAS  Google Scholar 

  • Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, Hamaguchi M, Kimata K (2002) Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci USA 99:3609–3614

    Article  PubMed  CAS  Google Scholar 

  • Itano N, Zhuo L, Kimata K (2008) Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression. Cancer Sci 99:1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Jacobson A, Brinck J, Briskin MJ, Spicer AP, Heldin P (2000) Expression of human hyaluronan synthases in response to external stimuli. Biochem J 348(Pt 1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Jokela TA, Lindgren A, Rilla K, Maytin E, Hascall VC, Tammi RH, Tammi MI (2008) Induction of hyaluronan cables and monocyte adherence in epidermal keratinocytes. Connect Tissue Res 49:115–119

    Article  PubMed  CAS  Google Scholar 

  • Karjalainen JM, Tammi RH, Tammi MI, Eskelinen MJ, Agren UM, Parkkinen JJ, Alhava EM, Kosma VM (2000) Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am J Pathol 157:957–965

    Article  PubMed  CAS  Google Scholar 

  • Karvinen S, Pasonen-Seppanen S, Hyttinen JM, Pienimaki JP, Torronen K, Jokela TA, Tammi MI, Tammi R (2003) Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthases 2 and 3. J Biol Chem 278:49495–49504

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, Wheeler MA, Wilson CM, Iida J, Eng D, Simpson MA, McCarthy JB, Bullard KM (2004) Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res 64:4569–4576

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Miyoshi S, Mikami T, Koyama H, Kitazawa M, Takeoka M, Sano K, Amano J, Isogai Z, Niida S, Oguri K, Okayama M, McDonald JA, Kimata K, Taniguchi S, Itano N (2010) Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Res 70:7073–7083

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Hibi T, Isogai Z, Yoneda M, Fujimori M, Amano J, Kawakubo M, Kannagi R, Kimata K, Taniguchi S, Itano N (2007) Hyperproduction of hyaluronan in neu-induced mammary tumor accelerates angiogenesis through stromal cell recruitment: possible involvement of versican/PG-M. Am J Pathol 170:1086–1099

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Kobayashi N, Harada M, Takeoka M, Kawai Y, Sano K, Fujimori M, Amano J, Ohhashi T, Kannagi R, Kimata K, Taniguchi S, Itano N (2008) Significance of tumor-associated stroma in promotion of intratumoral lymphangiogenesis: pivotal role of a hyaluronan-rich tumor microenvironment. Am J Pathol 172:179–193

    Article  PubMed  CAS  Google Scholar 

  • Kozlova I, Ruusala A, Voytyuk O, Skandalis S, Heldin P (2012) IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation. Cell Signal (May 22, epub)

  • Lasithiotakis KG, Sinnberg TW, Schittek B, Flaherty KT, Kulms D, Maczey E, Garbe C, Meier FE (2008) Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol 128:2013–2023

    Article  PubMed  CAS  Google Scholar 

  • Lauer ME, Erzurum SC, Mukhopadhyay D, Vasanji A, Drazba J, Wang A, Fulop C, Hascall VC (2008) Differentiated murine airway epithelial cells synthesize a leukocyte-adhesive hyaluronan matrix in response to endoplasmic reticulum stress. J Biol Chem 283:26283–26296

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Herlyn M (2007) Microenvironmental influences in melanoma progression. J Cell Biochem 101:862–872

    Article  PubMed  CAS  Google Scholar 

  • Li L, Asteriou T, Bernert B, Heldin CH, Heldin P (2007) Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem J 404:327–336

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Gao F, Han Z, Xu X, Underhill CB, Zhang L (2001) Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res 61:5207–5214

    PubMed  CAS  Google Scholar 

  • Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, Li G, Herlyn M (2005) The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10:2986–3001

    Article  PubMed  CAS  Google Scholar 

  • Meier F, Busch S, Lasithiotakis K, Kulms D, Garbe C, Maczey E, Herlyn M, Schittek B (2007) Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br J Dermatol 156:1204–1213

    Article  PubMed  CAS  Google Scholar 

  • Melnikova VO, Bar-Eli M (2009) Inflammation and melanoma metastasis. Pigment Cell Melanoma Res 22:257–267

    Article  PubMed  CAS  Google Scholar 

  • Monzon ME, Fregien N, Schmid N, Falcon NS, Campos M, Casalino-Matsuda SM, Forteza RM (2010) Reactive oxygen species and hyaluronidase 2 regulate airway epithelial hyaluronan fragmentation. J Biol Chem 285:26126–26134

    Article  PubMed  CAS  Google Scholar 

  • Pardue EL, Ibrahim S, Ramamurthi A (2008) Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4:203–214

    Article  PubMed  Google Scholar 

  • Pasonen-Seppanen S, Karvinen S, Torronen K, Hyttinen JM, Jokela T, Lammi MJ, Tammi MI, Tammi R (2003) EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J Invest Dermatol 120:1038–1044

    Article  PubMed  Google Scholar 

  • Sampson PM, Rochester CL, Freundlich B, Elias JA (1992) Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. J Clin Invest 90:1492–1503

    Article  PubMed  CAS  Google Scholar 

  • Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M (2003) Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63:756–759

    PubMed  CAS  Google Scholar 

  • Sironen RK, Tammi M, Tammi R, Auvinen PK, Anttila M, Kosma VM (2011) Hyaluronan in human malignancies. Exp Cell Res 317:383–391

    Article  PubMed  CAS  Google Scholar 

  • Tammi R, Agren UM, Tuhkanen AL, Tammi M (1994) Hyaluronan metabolism in skin. Prog Histochem Cytochem 29:1–81

    Article  PubMed  CAS  Google Scholar 

  • Tammi R, MacCallum D, Hascall VC, Pienimaki JP, Hyttinen M, Tammi M (1998) Hyaluronan bound to CD44 on keratinocytes is displaced by hyaluronan decasaccharides and not hexasaccharides. J Biol Chem 273:28878–28888

    Article  PubMed  CAS  Google Scholar 

  • Tammi RH, Kultti A, Kosma VM, Pirinen R, Auvinen P, Tammi MI (2008) Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin Cancer Biol 18:288–295

    Article  PubMed  CAS  Google Scholar 

  • Vigetti D, Genasetti A, Karousou E, Viola M, Moretto P, Clerici M, Deleonibus S, De Luca G, Hascall VC, Passi A (2010) Proinflammatory cytokines induce hyaluronan synthesis and monocyte adhesion in human endothelial cells through hyaluronan synthase 2 (HAS2) and the nuclear factor-kappaB (NF-kappaB) pathway. J Biol Chem 285:24639–24645

    Article  PubMed  CAS  Google Scholar 

  • Wandel E, Grasshoff A, Mittag M, Haustein UF, Saalbach A (2000) Fibroblasts surrounding melanoma express elevated levels of matrix metalloproteinase-1 (MMP-1) and intercellular adhesion molecule-1 (ICAM-1) in vitro. Exp Dermatol 9:34–41

    Google Scholar 

  • Wang SJ, Bourguignon LY (2011) Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am J Pathol 178:956–963

    Article  PubMed  CAS  Google Scholar 

  • Webber J, Jenkins RH, Meran S, Phillips A, Steadman R (2009a) Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. Am J Pathol 175:148–160

    Article  PubMed  CAS  Google Scholar 

  • Webber J, Meran S, Steadman R, Phillips A (2009b) Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J Biol Chem 284:9083–9092

    Article  PubMed  CAS  Google Scholar 

  • Welch DR, Bisi JE, Miller BE, Conaway D, Seftor EA, Yohem KH, Gilmore LB, Seftor RE, Nakajima M, Hendrix MJ (1991) Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int J Cancer 47:227–237

    Article  PubMed  CAS  Google Scholar 

  • Willenberg A, Saalbach A, Simon JC, Anderegg U (2012) Melanoma cells control HA synthesis in peritumoral fibroblasts via PDGF-AA and PDGF-CC: impact on melanoma cell proliferation. J Invest Dermatol 132:385–393

    Article  PubMed  CAS  Google Scholar 

  • Wood MW, Breitschwerdt EB, Gookin JL (2011) Autocrine effects of interleukin-6 mediate acute-phase proinflammatory and tissue-reparative transcriptional responses of canine bladder mucosa. Infect Immun 79:708–715

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Itano N, Hata K, Ueda M, Kimata K (2004) Differential regulation by IL-1beta and EGF of expression of three different hyaluronan synthases in oral mucosal epithelial cells and fibroblasts and dermal fibroblasts: quantitative analysis using real-time RT-PCR. J Invest Dermatol 122:631–639

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Igarashi M, Hirata A, Sugae N, Tsuchiya H, Jimbu Y, Tominaga M, Kato T (2004) Altered PDGF-BB-induced p38 MAP kinase activation in diabetic vascular smooth muscle cells: roles of protein kinase C-delta. Arterioscler Thromb Vasc Biol 24:2095–2101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge expert technical help from Eija Kettunen, Arja Venäläinen, Eija Rahunen and Tuula Venäläinen. Academy of Finland (S.P-S.), Paavo Koistinen Foundation (S.P-S.), The North Savo Cancer Fund (S.P-S), Cancer Center of Eastern Finland (M.T. and R.T.) and Sigrid Juselius Foundation (R.T. and M.T.) supported this work financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Pasonen-Seppänen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2012_1000_MOESM1_ESM.eps

Supplementary Figure 1. The effect of PDGFRβ siRNA transfection on PDGFRβ protein expression. Cell lysates were collected 24 h after siRNA transfection and analyzed by Western blotting. (EPS 522 kb)

418_2012_1000_MOESM2_ESM.eps

Supplementary Figure 2 . The effect of melanoma cell CM and PDGFR inhibitor on MMP1, 2, 9 and 14 mRNA expression. Fibroblast cultures were treated with melanoma cell CM with or without the PDGFR inhibitor for 24 h and mRNA levels of different MMPs were analyzed with qRT-PCR. The data represent means ± SEM of four independent experiments. (EPS 421 kb)

Supplementary material 3 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasonen-Seppänen, S., Takabe, P., Edward, M. et al. Melanoma cell-derived factors stimulate hyaluronan synthesis in dermal fibroblasts by upregulating HAS2 through PDGFR-PI3K-AKT and p38 signaling. Histochem Cell Biol 138, 895–911 (2012). https://doi.org/10.1007/s00418-012-1000-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1000-x

Keywords

Navigation