Skip to main content

Advertisement

Log in

Review on intermediate filaments of the nervous system and their pathological alterations

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdo WF, Bloem BR, Van Geel WJ, Esselink RA, Verbeek MM (2007) CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol Aging 28(5):742–747

    Article  PubMed  CAS  Google Scholar 

  • Aldape K, Burger PC, Perry A (2007) Clinicopathologic aspects of 1p/19q loss and the diagnosis of oligodendroglioma. Arch Pathol Lab Med 131(2):242–251

    PubMed  CAS  Google Scholar 

  • Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, Katsuoka K, Hoffman RM (2005) Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res 65(12):5352–5357

    Article  PubMed  CAS  Google Scholar 

  • Axelsson M, Malmestrom C, Nilsson S, Haghighi S, Rosengren L, Lycke J (2011) Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol 258(5):882–888

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Lassmann H, Budka H, Jellinger K, Grundke-Iqbal I, Iqbal K, Wiche G, Seitelberger F, Wisniewski HM (1989) An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination. J Neuropathol Exp Neurol 48(1):81–93

    Article  PubMed  CAS  Google Scholar 

  • Bartos A, Fialova L, Svarcova J, Ripova D (2012) Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. J Neuroimmunol 252(1–2):100–105

    Article  PubMed  CAS  Google Scholar 

  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12):3943–3952

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Jin X, Yin J, Kim SH, Lee NK, Oh SY, Jin X, Kim MK, Kim EB, Son JS, Kim SC, Nam DH, Kim SH, Kang SK, Kim H, Choi YJ (2011) Identification of a peptide that interacts with Nestin protein expressed in brain cancer stem cells. Biomaterials 32(33):8518–8528

    Article  PubMed  CAS  Google Scholar 

  • Boylan KB, Glass JD, Crook JE, Yang C, Thomas CS, Desaro P, Johnston A, Overstreet K, Kelly C, Polak M, Shaw G (2013) Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 84(4):467–472

    Article  PubMed  Google Scholar 

  • Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1):117–120

    Article  PubMed  CAS  Google Scholar 

  • Brettschneider J, Petzold A, Sussmuth SD, Landwehrmeyer GB, Ludolph AC, Kassubek J, Tumani H (2006a) Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Mov Disord 21(12):2224–2227

    Article  PubMed  Google Scholar 

  • Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H (2006b) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66(6):852–856

    Article  PubMed  CAS  Google Scholar 

  • Brommeland T, Rosengren L, Fridlund S, Hennig R, Isaksen V (2007) Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol Scand 116(6):380–384

    Article  PubMed  CAS  Google Scholar 

  • Brownlees J, Ackerley S, Grierson AJ, Jacobsen NJ, Shea K, Anderton BH, Leigh PN, Shaw CE, Miller CC (2002) Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet 11(23):2837–2844

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD (2011) Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 317(16):2252–2266

    Article  PubMed  CAS  Google Scholar 

  • Cochard P, Paulin D (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 4(8):2080–2094

    PubMed  CAS  Google Scholar 

  • Constantinescu R, Holmberg B, Rosengren L, Corneliusson O, Johnels B, Zetterberg H (2011) Light subunit of neurofilament triplet protein in the cerebrospinal fluid after subthalamic nucleus stimulation for Parkinson’s disease. Acta Neurol Scand 124(3):206–210

    Article  PubMed  CAS  Google Scholar 

  • Corbo M, Hays AP (1992) Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J Neuropathol Exp Neurol 51(5):531–537

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Li B, Liu F, Iqbal K, Grundke-Iqbal I, Brandt R, Gong CX (2008) Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. Faseb J 22(1):138–145

    Article  PubMed  CAS  Google Scholar 

  • Ducray F, Idbaih A, de Reynies A, Bieche I, Thillet J, Mokhtari K, Lair S, Marie Y, Paris S, Vidaud M, Hoang-Xuan K, Delattre O, Delattre JY, Sanson M (2008) Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer 7:41

    Article  PubMed  Google Scholar 

  • Ducray F, Criniere E, Idbaih A, Mokhtari K, Marie Y, Paris S, Navarro S, Laigle-Donadey F, Dehais C, Thillet J, Hoang-Xuan K, Delattre JY, Sanson M (2009) Alpha-internexin expression identifies 1p19q codeleted gliomas. Neurology 72(2):156–161

    Article  PubMed  CAS  Google Scholar 

  • Ducray F, Mokhtari K, Criniere E, Idbaih A, Marie Y, Dehais C, Paris S, Carpentier C, Dieme MJ, Adam C, Hoang-Xuan K, Duyckaerts C, Delattre JY, Sanson M (2011) Diagnostic and prognostic value of alpha internexin expression in a series of 409 gliomas. Eur J Cancer 47(5):802–808

    Article  PubMed  CAS  Google Scholar 

  • Durand KS, Guillaudeau A, Weinbreck N, DeArmas R, Robert S, Chaunavel A, Pommepuy I, Bourthoumieu S, Caire F, Sturtz FG, Labrousse FJ (2010) 1p19q LOH patterns and expression of p53 and Olig2 in gliomas: relation with histological types and prognosis. Mod Pathol 23(4):619–628

    Article  PubMed  CAS  Google Scholar 

  • Durand K, Guillaudeau A, Pommepuy I, Mesturoux L, Chaunavel A, Gadeaud E, Porcheron M, Moreau JJ, Labrousse F (2013) Alpha-internexin expression in gliomas: relationship with histological type and 1p, 19q, 10p and 10q status. J Clin Pathol 64(9):793–801

    Article  Google Scholar 

  • Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12(2):389–405

    Article  PubMed  CAS  Google Scholar 

  • Eyer J, Cleveland DW, Wong PC, Peterson AC (1998) Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature 391(6667):584–587

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Luna R, Mata M, Nunez L, Calvar J, Dasi F, Arias E, Piquer J, Cerda-Nicolas M, Taratuto AL, Sevlever G, Celda B, Martinetto H (2009) Loss of heterozygosity at 1p–19q induces a global change in oligodendroglial tumor gene expression. J Neurooncol 95(3):343–354

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DA, Krizus A, Martinoli MG, Meininger V, Dib M, Rouleau GA, Julien JP (1994) Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet 3(10):1757–1761

    Article  PubMed  CAS  Google Scholar 

  • Galloway PG, Mulvihill P, Perry G (1992) Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol 140(4):809–822

    PubMed  CAS  Google Scholar 

  • Gentil BJ, Minotti S, Beange M, Baloh RH, Julien JP, Durham HD (2012) Normal role of the low-molecular-weight neurofilament protein in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease. Faseb J 26(3):1194–1203

    Article  PubMed  CAS  Google Scholar 

  • Giannini C, Burger PC, Berkey BA, Cairncross JG, Jenkins RB, Mehta M, Curran WJ, Aldape K (2008) Anaplastic oligodendroglial tumors: refining the correlation among histopathology, 1p 19q deletion and clinical outcome in intergroup radiation therapy oncology group trial 9402. Brain Pathol 18(3):360–369

    Article  PubMed  Google Scholar 

  • Gros-Louis F, Lariviere R, Gowing G, Laurent S, Camu W, Bouchard JP, Meininger V, Rouleau GA, Julien JP (2004) A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 279(44):45951–45956

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Ohrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, Nilsson C, Hakan W, Decraemer H, Nagga K, Minthon L, Londos E, Vanmechelen E, Holmberg B, Zetterberg H, Blennow K, Hansson O (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69(11):1445–1452

    Article  PubMed  Google Scholar 

  • Hardy J (2006) A 100 years of Alzheimer’s disease research. Neuron 52(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Helfand BT, Loomis P, Yoon M, Goldman RD (2003) Rapid transport of neural intermediate filament protein. J Cell Sci 116(Pt 11):2345–2359

    Article  PubMed  CAS  Google Scholar 

  • Hill WD, Arai M, Cohen JA, Trojanowski JQ (1993) Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol 329(3):328–336

    Article  PubMed  CAS  Google Scholar 

  • Hlobilkova A, Ehrmann J, Knizetova P, Krejci V, Kalita O, Kolar Z (2009) Analysis of VEGF, Flt-1, Flk-1, nestin and MMP-9 in relation to astrocytoma pathogenesis and progression. Neoplasma 56(4):284–290

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RM (2011) Nestin-driven green fluorescent protein as an imaging marker for nascent blood vessels in mouse models of cancer. Methods Mol Biol 689:183–204

    Article  PubMed  CAS  Google Scholar 

  • Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(Pt 4):861–870

    Article  PubMed  Google Scholar 

  • Husain H, Savage W, Grossman SA, Ye X, Burger PC, Everett A, Bettegowda C, Diaz LA Jr, Blair C, Romans KE, Holdhoff M (2012) Pre- and post-operative plasma glial fibrillary acidic protein levels in patients with newly diagnosed gliomas. J Neurooncol 109(1):123–127

    Article  PubMed  CAS  Google Scholar 

  • Ikota H, Kinjo S, Yokoo H, Nakazato Y (2006) Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol 111(5):475–482

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Bischoff R, Holtzer H (1968) Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol 38(3):538–555

    Article  PubMed  CAS  Google Scholar 

  • Jany P, Hagemann TL, Messing A (2013) GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5(2):e00109. doi:10.1042/AN20130003

    Article  PubMed  Google Scholar 

  • Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, Flynn H, Passe S, Felten S, Brown PD, Shaw EG, Buckner JC (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66(20):9852–9861

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Jin X, Jung JE, Beck S, Kim H (2013) Cell surface Nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun 433(4):496–501

    Article  PubMed  CAS  Google Scholar 

  • Jing R, Pizzolato G, Robson RM, Gabbiani G, Skalli O (2005) Intermediate filament protein synemin is present in human reactive and malignant astrocytes and associates with ruffled membranes in astrocytoma cells. Glia 50(2):107–120

    Article  PubMed  Google Scholar 

  • Johannessen TC, Bjerkvig R, Tysnes BB (2008) DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer Treat Rev 34(6):558–567

    Article  PubMed  CAS  Google Scholar 

  • Joo CK, Lee EH, Kim JC, Kim YH, Lee JH, Kim JT, Chung KH, Kim J (1999) Degeneration and transdifferentiation of human lens epithelial cells in nuclear and anterior polar cataracts. J Cataract Refract Surg 25(5):652–658

    Article  PubMed  CAS  Google Scholar 

  • Jung CS, Foerch C, Schanzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer M (2007) Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 130(Pt 12):3336–3341

    Article  PubMed  CAS  Google Scholar 

  • Kong J, Tung VW, Aghajanian J, Xu Z (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140(5):1167–1176

    Article  PubMed  CAS  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595

    Article  PubMed  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  • Lu CH, Petzold A, Kalmar B, Dick J, Malaspina A, Greensmith L (2012) Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLoS One 7(7):e40998

    Article  PubMed  CAS  Google Scholar 

  • Lycke JN, Karlsson JE, Andersen O, Rosengren LE (1998) Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(3):402–404

    Article  PubMed  CAS  Google Scholar 

  • Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61(12):1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Manetto V, Sternberger NH, Perry G, Sternberger LA, Gambetti P (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47(6):642–653

    Article  PubMed  CAS  Google Scholar 

  • Matsushige T, Inoue H, Fukunaga S, Hasegawa S, Okuda M, Ichiyama T (2012) Serum neurofilament concentrations in children with prolonged febrile seizures. J Neurol Sci 321(1–2):39–42

    Article  PubMed  CAS  Google Scholar 

  • Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, Petrin AN, Evgrafov OV (2000) A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet 67(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Misu T, Takano R, Fujihara K, Takahashi T, Sato S, Itoyama Y (2009) Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J Neurol Neurosurg Psychiatry 80(5):575–577

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Bhattacharya SS, Moore T, Prescott Q, Wedig T, Herrmann H, Magin TM (2009) Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet 18(6):1052–1057

    Article  PubMed  Google Scholar 

  • Nakano I, Kornblum HI (2006) Brain tumor stem cells. Pediatr Res 59(4 Pt 2):54R–58R

    Article  PubMed  Google Scholar 

  • Nixon RA, Shea TB (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton 22(2):81–91

    Article  PubMed  CAS  Google Scholar 

  • Noetzel E, Rose M, Sevinc E, Hilgers RD, Hartmann A, Naami A, Knuchel R, Dahl E (2010) Intermediate filament dynamics and breast cancer: aberrant promoter methylation of the synemin gene is associated with early tumor relapse. Oncogene 29(34):4814–4825

    Article  PubMed  CAS  Google Scholar 

  • Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Jing R, Pitre A, Williams BJ, Skalli O (2008) Intermediate filament protein synemin contributes to the migratory properties of astrocytoma cells by influencing the dynamics of the actin cytoskeleton. Faseb J 22(9):3196–3206

    Article  PubMed  CAS  Google Scholar 

  • Pekny T, Faiz M, Wilhelmsson U, Curtis MA, Matej R, Skalli O, Pekny M (2013) Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. Apmis. doi:10.1111/apm.12088

  • Perez-Olle R, Lopez-Toledano MA, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K, Liem RK (2005) Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem 93(4):861–874

    Article  PubMed  CAS  Google Scholar 

  • Perrot R, Eyer J (2009) Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 80(4–5):282–295

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J (2012) Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis 47(2):155–162

    Article  PubMed  CAS  Google Scholar 

  • Petzold A, Keir G, Green AJ, Giovannoni G, Thompson EJ (2003) A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods 278(1–2):179–190

    Article  PubMed  CAS  Google Scholar 

  • Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RH, Polman CH, Uitdehaag BM, Thompson EJ, Giovannoni G (2005) Axonal damage accumulates in the progressive phase of multiple sclerosis: 3 year follow up study. J Neurol Neurosurg Psychiatry 76(2):206–211

    Article  PubMed  CAS  Google Scholar 

  • Petzold A, Keir G, Warren J, Fox N, Rossor MN (2007) A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener Dis 4(2–3):185–194

    Article  PubMed  CAS  Google Scholar 

  • Pitre A, Davis N, Paul M, Orr AW, Skalli O (2012) Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A. Mol Biol Cell 23(7):1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Rana OR, Schroder JW, Baukloh JK, Saygili E, Mischke K, Schiefer J, Weis J, Marx N, Rassaf T, Kelm M, Shin DI, Meyer C, Saygili E (2012) Neurofilament light chain as an early and sensitive predictor of long-term neurological outcome in patients after cardiac arrest. Int J Cardiol. doi:10.1016/j.ijcard.2012.12.016

  • Reilly MM (2009) NEFL-related Charcot-Marie-tooth disease: an unraveling story. Ann Neurol 66(6):714–716

    Article  PubMed  CAS  Google Scholar 

  • Rejdak K, Kuhle J, Ruegg S, Lindberg RL, Petzold A, Sulejczak D, Papuc E, Rejdak R, Stelmasiak Z, Grieb P (2012) Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 53(5):922–927

    Article  PubMed  CAS  Google Scholar 

  • Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C (1996) Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 67(5):2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Rudrabhatla P, Grant P, Jaffe H, Strong MJ, Pant HC (2012) Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. Faseb J 24(11):4396–4407

    Article  Google Scholar 

  • Semra YK, Seidi OA, Sharief MK (2002) Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol 122(1–2):132–139

    Article  PubMed  CAS  Google Scholar 

  • Shah JV, Flanagan LA, Janmey PA, Leterrier JF (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11(10):3495–3508

    Article  PubMed  CAS  Google Scholar 

  • Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR (2005) Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336(4):1268–1277

    Article  PubMed  CAS  Google Scholar 

  • Shirahata M, Iwao-Koizumi K, Saito S, Ueno N, Oda M, Hashimoto N, Takahashi JA, Kato K (2007) Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis. Clin Cancer Res 13(24):7341–7356

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473

    Article  PubMed  CAS  Google Scholar 

  • Strong MJ, Hudson AJ, Alvord WG (1991) Familial amyotrophic lateral sclerosis, 1850–1989: a statistical analysis of the world literature. Can J Neurol Sci 18(1):45–58

    PubMed  CAS  Google Scholar 

  • Su W, Chen HB, Li SH, Wu DY (2012) Correlational study of the serum levels of the glial fibrillary acidic protein and neurofilament proteins in Parkinson’s disease patients. Clin Neurol Neurosurg 114(4):372–375

    Article  PubMed  Google Scholar 

  • Szeverenyi I, Cassidy AJ, Chung CW, Lee BT, Common JE, Ogg SC, Chen H, Sim SY, Goh WL, Ng KW, Simpson JA, Chee LL, Eng GH, Li B, Lunny DP, Chuon D, Venkatesh A, Khoo KH, McLean WH, Lim YP, Lane EB (2008) The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 29(3):351–360

    Article  PubMed  CAS  Google Scholar 

  • Tortelli R, Ruggieri M, Cortese R, D’Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, Logroscino G, Simone IL (2012) Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol 19(12):1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Walker KL, Yoo HK, Undamatla J, Szaro BG (2001) Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21(24):9655–9666

    PubMed  CAS  Google Scholar 

  • Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507(1):81–87

    Article  PubMed  CAS  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  • Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 112(Pt 21):3799–3814

    PubMed  CAS  Google Scholar 

  • Yoshida T, Nakagawa M (2012) Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology 32(4):440–446

    Article  PubMed  Google Scholar 

  • Zhang Z, Casey DM, Julien JP, Xu Z (2002) Normal dendritic arborization in spinal motoneurons requires neurofilament subunit L. J Comp Neurol 450(2):144–152

    Article  PubMed  CAS  Google Scholar 

  • Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M (2008) Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res 7(1):386–399

    Article  PubMed  CAS  Google Scholar 

  • Zuchner S, Vance JM (2006) Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nat Clin Pract Neurol 2(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Zurek J, Bartlova L, Fedora M (2011) Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. Brain Inj 25(2):221–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by AFM (Association Française contre les Myopathies), ARC (Association de Recherche sur le Cancer) and CIMATH (Ciblage Moleculaire et Applications Thérapeutiques). CLC is supported by the Ministère de la Recherche, and JE is supported by INSERM (Institut National de la Santé et de la Recherche Médicale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Eyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lépinoux-Chambaud, C., Eyer, J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 140, 13–22 (2013). https://doi.org/10.1007/s00418-013-1101-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1101-1

Keywords

Navigation