Skip to main content

Advertisement

Log in

Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

During early vertebrate embryogenesis, the expression of SOXB1 proteins is precisely regulated by a number of different mechanisms, including Wnt/β-catenin signaling. This is essential for controlling the balance between stemness and differentiation in embryonic stem cells. In the present study, we analyzed the molecular mechanism of LiCl action in NT2/D1 cells and examined the crosstalk between SOXB1 proteins and Wnt signaling in this model system. We have shown that LiCl increases β-catenin level, induces its translocation to the nucleus and consequently up-regulates β-catenin/Tcf-dependent transcription in NT2/D1 cells. Our results also suggest that LiCl treatment leads to increased expression of SOX2 and SOX3 proteins in NT2/D1 cells through activation of canonical Wnt signaling. Finally, we have detected a negative feedback loop between β-catenin and SOX2 expression in NT2/D1 cells. Since β-catenin and SOX2 have been linked to processes of self-renewal and pluripotency, our results have implications for future research on the maintenance of stemness and lineage commitment of embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB (2009) A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 136:3289–3299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ambrosetti D, Holmes G, Mansukhani A, Basilico C (2008) Fibroblast growth factor signaling uses multiple mechanisms to inhibit Wnt-induced transcription in osteoblasts. Mol Cell Biol 28:4759–4771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andrews PW (1998) Teratocarcinomas and human embryology: pluripotent human EC cell lines. Review article. APMIS 106:158–167 (discussion 167–168)

    Article  CAS  PubMed  Google Scholar 

  • Andrews PW (2002) From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 357:405–417

    Article  PubMed Central  PubMed  Google Scholar 

  • Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, Fogh J (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50:147–162

    CAS  PubMed  Google Scholar 

  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  CAS  PubMed  Google Scholar 

  • Bernard P, Harley VR (2010) Acquisition of SOX transcription factor specificity through protein–protein interaction, modulation of Wnt signalling and post-translational modification. Int J Biochem Cell Biol 42:400–410

    Article  CAS  PubMed  Google Scholar 

  • Bernard P, Fleming A, Lacombe A, Harley VR, Vilain E (2008a) Wnt4 inhibits beta-catenin/TCF signalling by redirecting beta-catenin to the cell membrane. Biol Cell 100:167–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernard P, Sim H, Knower K, Vilain E, Harley V (2008b) Human SRY inhibits beta-catenin-mediated transcription. Int J Biochem Cell Biol 40:2889–2900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227:239–255

    Article  CAS  PubMed  Google Scholar 

  • Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by So1-3 activity. Nat Neurosci 6:1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, Shang Y (2008) The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283:17969–17978

    Article  CAS  PubMed  Google Scholar 

  • Cox RT, Pai LM, Miller JR, Orsulic S, Stein J, McCormick CA, Audeh Y, Wang W, Moon RT, Peifer M (1999) Membrane-tethered Drosophila Armadillo cannot transduce wingless signal on its own. Development 126:1327–1335

    CAS  PubMed  Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding VW, Chen RH, McCormick F (2000) Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J Biol Chem 275:32475–32481

    Article  CAS  PubMed  Google Scholar 

  • Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR (2007) Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12:957–971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drakulic D, Krstic A, Stevanovic M (2012) Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones. Genet Mol Res 11:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101:12682–12687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63:2658–2664

    CAS  PubMed  Google Scholar 

  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765

    Article  CAS  PubMed  Google Scholar 

  • Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA 107:9222–9227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hassani SN, Totonchi M, Farrokhi A, Taei A, Larijani MR, Gourabi H, Baharvand H (2012) Simultaneous suppression of TGF-beta and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem Cell Rev 8:472–481

    Article  CAS  PubMed  Google Scholar 

  • Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS (1997) Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 185:82–91

    Article  CAS  PubMed  Google Scholar 

  • Holmberg J, Hansson E, Malewicz M, Sandberg M, Perlmann T, Lendahl U, Muhr J (2008) SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation. Development 135:1843–1851

    Article  CAS  PubMed  Google Scholar 

  • Kan L, Israsena N, Zhang Z, Hu M, Zhao LR, Jalali A, Sahni V, Kessler JA (2004) Sox1 acts through multiple independent pathways to promote neurogenesis. Dev Biol 269:580–594

    Article  CAS  PubMed  Google Scholar 

  • Katoh M (2002) Regulation of WNT signaling molecules by retinoic acid during neuronal differentiation in NT2 cells: threshold model of WNT action (review). Int J Mol Med 10:683–687

    CAS  PubMed  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kormish JD, Sinner D, Zorn AM (2010) Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 239:56–68

    PubMed Central  CAS  PubMed  Google Scholar 

  • Latres E, Chiaur DS, Pagano M (1999) The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18:849–854

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) Beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 96:6273–6278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C (2005) Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 168:1065–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JR, Moon RT (1997) Analysis of the signaling activities of localization mutants of beta-catenin during axis specification in Xenopus. J Cell Biol 139:229–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misiuta IE, Saporta S, Sanberg PR, Zigova T, Willing AE (2006) Influence of retinoic acid and lithium on proliferation and dopaminergic potential of human NT2 cells. J Neurosci Res 83:668–679

    Article  CAS  PubMed  Google Scholar 

  • Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125:579–587

    CAS  PubMed  Google Scholar 

  • Mojsin M, Stevanovic M (2010) PBX1 and MEIS1 up-regulate SOX3 gene expression by direct interaction with a consensus binding site within the basal promoter region. Biochem J 425:107–116

    Article  CAS  Google Scholar 

  • Mojsin M, Grujicic NK, Nikcevic G, Krstic A, Savic T, Stevanovic M (2006) Mapping of the RXRalpha binding elements involved in retinoic acid induced transcriptional activation of the human SOX3 gene. Neurosci Res 56:409–418

    Article  CAS  PubMed  Google Scholar 

  • Mojsin M, Topalovic V, Marjanovic J, Stevanovic M (2013) Quercetin and lithium chloride modulate Wnt signaling in pluripotent embryonal carcinoma NT2/D1 cells. Arch Biol Sci 65:201–209

    Article  Google Scholar 

  • Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399

    Article  CAS  PubMed  Google Scholar 

  • Montserrat N, Nivet E, Sancho-Martinez I, Hishida T, Kumar S, Miquel L, Cortina C, Hishida Y, Xia Y, Esteban CR, Izpisua Belmonte JC (2013) Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 13:341–350

    Article  CAS  PubMed  Google Scholar 

  • Nishimura N, Kamimura Y, Ishida Y, Takemoto T, Kondoh H, Uchikawa M (2012) A systematic survey and characterization of enhancers that regulate Sox3 in neuro-sensory development in comparison with Sox2 enhancers. Biology 1:714–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oosterveen T, Kurdija S, Alekseenko Z, Uhde CW, Bergsland M, Sandberg M, Andersson E, Dias JM, Muhr J, Ericson J (2012) Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev Cell 23:1006–1019

    Article  CAS  PubMed  Google Scholar 

  • Orsulic S, Huber O, Aberle H, Arnold S, Kemler R (1999) E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 112(Pt 8):1237–1245

    CAS  PubMed  Google Scholar 

  • Pal R, Ravindran G (2006) Assessment of pluripotency and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells. Cell Prolif 39:585–598

    Article  CAS  PubMed  Google Scholar 

  • Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7:338–344

    Article  CAS  PubMed  Google Scholar 

  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978

    CAS  PubMed  Google Scholar 

  • Podrygajlo G, Tegenge MA, Gierse A, Paquet-Durand F, Tan S, Bicker G, Stern M (2009) Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture. Cell Tissue Res 336:439–452

    Article  CAS  PubMed  Google Scholar 

  • Popovic J, Stanisavljevic D, Schwirtlich M, Klajn A, Marjanovic J, Stevanovic M (2014) Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS ONE 9:e91852

    Article  PubMed Central  PubMed  Google Scholar 

  • Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofe-Ochoa X, Totzke F, Schachtele C, Mester J, Polychronopoulos P, Magiatis P, Skaltsounis AL, Boix J, Meijer L (2006) 7-Bromoindirubin-3′-oxime induces caspase-independent cell death. Oncogene 25:6304–6318

    Article  CAS  PubMed  Google Scholar 

  • Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES (2009) Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech Dev 126:42–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  PubMed  Google Scholar 

  • Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A (2011) Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 31:4593–4608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, Mansukhani A (2013) SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo–adipo lineage. Cell Rep 3:2075–2087

    Article  CAS  PubMed  Google Scholar 

  • Snow GE, Kasper AC, Busch AM, Schwarz E, Ewings KE, Bee T, Spinella MJ, Dmitrovsky E, Freemantle SJ (2009) Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting. BMC Cancer 9:383

    Article  PubMed Central  PubMed  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668

    Article  CAS  PubMed  Google Scholar 

  • Stevanovic M (2003) Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol Biol Rep 30:127–132

    Article  CAS  PubMed  Google Scholar 

  • Tolwinski NS, Wieschaus E (2004) A nuclear function for armadillo/beta-catenin. PLoS Biol 2:E95

    Article  PubMed Central  PubMed  Google Scholar 

  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799

    Article  PubMed  Google Scholar 

  • Wend P, Fang L, Zhu Q, Schipper JH, Loddenkemper C, Kosel F, Brinkmann V, Eckert K, Hindersin S, Holland JD, Lehr S, Kahn M, Ziebold U, Birchmeier W (2013a) Wnt/beta-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J 32:1977–1989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, Wolsky R, Bentolila LA, Grant SG, Elashoff D, Lehr S, Latimer JJ, Bose S, Sattar H, Krum SA, Miranda-Carboni GA (2013b) WNT10B/beta-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO molecular medicine 5:264–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willing AE, Zigova T, Milliken M, Poulos S, Saporta S, McGrogan M, Snable G, Sanberg PR (2002) Lithium exposure enhances survival of NT2 N cells (hNT neurons) in the hemiparkinsonian rat. Eur J Neurosci 16:2271–2278

    Article  PubMed  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Basta T, Jensen ED, Klymkowsky MW (2003a) The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130:5609–5624

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003b) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 278:33067–33077

    Article  CAS  PubMed  Google Scholar 

  • Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE (1999) Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell 4:487–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Grant No 173051). We thank Prof. Peter W. Andrews (University of Sheffield, UK) for the NT2/D1 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Mojsin.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojsin, M., Topalovic, V., Vicentic, J.M. et al. Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells. Histochem Cell Biol 144, 429–441 (2015). https://doi.org/10.1007/s00418-015-1352-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1352-0

Keywords

Navigation