Skip to main content
Erschienen in: European Journal of Applied Physiology 2/2007

01.01.2007 | Original Article

Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes

verfasst von: Delphine Thevenet, Magaly Tardieu-Berger, Serge Berthoin, Jacques Prioux

Erschienen in: European Journal of Applied Physiology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to analyze the effects of recovery mode (active/passive) on time spent at high percentage of maximal oxygen uptake \({({V\hbox{O}}_{2{\rm max}})},\) i.e. above 90% of \({{V\hbox{O}}_{2{\rm max}}\;(t{90}{V\hbox{O}}_{2{\rm max}})}\) and above 95% of \({{V\hbox{O}}_{2{\rm max}}}\;(t95{{V\hbox{O}}_{2{\rm max}}})\) during a single short intermittent session. Eight endurance-trained male adolescents (15.9 ± 1.4 years) performed three field tests until exhaustion: a graded test to determine their \({{V\hbox{O}}_{2{\rm max}}}\) (57.4 ± 6.1 ml min−1 kg−1), and maximal aerobic velocity (MAV; 17.9 ± 0.4 km h−1), and in a random order, two intermittent exercises consisting of repeated 30 s runs at 105% of MAV alternated with 30 s passive (IEP) or active recovery (IEA, 50% of MAV). Time to exhaustion (t lim) was significantly longer for IEP than for IEA (2145 ± 829 vs. 1072 ± 388 s, P  <  0.01). No difference was found in \({t90{V\hbox{O}}_{2{\rm max}}}\) and \({t95{V\hbox{O}}_{2{\rm max}}}\) between IEP (548 ± 499–316 ± 360 s) and IEA (746 ± 417–459 ± 332 s). However, when expressed as a percentage of t lim, \({t90{V\hbox{O}}_{2{\rm max}}}\) and \({t95{V\hbox{O}}_{2{\rm max}}}\) were significantly longer (P < 0.001 and P < 0.05, respectively) during IEA (67.7 ± 19%–42.1 ± 27%) than during IEP (24.2 ± 19%–13.8 ± 15%). Our results demonstrated no influence of recovery mode on absolute \({t90{V\hbox{O}}_{2{\rm max}}}\) or \({t95{V\hbox{O}}_{2{\rm max}}}\) mean values despite significantly longer t lim values for IEP than for IEA. In conclusion, passive recovery allows a longer running time (t lim) for a similar time spent at a high percentage of \({{V\hbox{O}}_{2{\rm max}}}.\)
Literatur
Zurück zum Zitat Åstrand I, Åstrand PO, Christensen EH, Hedman R (1960) Intermittent muscular work. Acta Physiol Scand 48:448–453PubMed Åstrand I, Åstrand PO, Christensen EH, Hedman R (1960) Intermittent muscular work. Acta Physiol Scand 48:448–453PubMed
Zurück zum Zitat Abdi H (1987) Introduction au traitement statistique des données expérimentales. Grenoble. Presse Universitaire de Grenoble Abdi H (1987) Introduction au traitement statistique des données expérimentales. Grenoble. Presse Universitaire de Grenoble
Zurück zum Zitat Baldari C, Videira M, Madeira F, Sergio J, Guidetti L (2005) Blood lactate removal during recovery at various intensities below the individual anaerobic threshold in triathletes. J Sports Med Phys Fitness 45(4):460–466PubMed Baldari C, Videira M, Madeira F, Sergio J, Guidetti L (2005) Blood lactate removal during recovery at various intensities below the individual anaerobic threshold in triathletes. J Sports Med Phys Fitness 45(4):460–466PubMed
Zurück zum Zitat Bangsbo J, Gollnick PD, Johansen L, Saltin B (1994) Muscle lactate metabolism in recovery from intense exhaustive exercise: Impact of light exercise. J Appl Physiol 77:1890–1895PubMed Bangsbo J, Gollnick PD, Johansen L, Saltin B (1994) Muscle lactate metabolism in recovery from intense exhaustive exercise: Impact of light exercise. J Appl Physiol 77:1890–1895PubMed
Zurück zum Zitat Billat V, Bernard O, Pinoteau J, Petit B, Koralsztein JP (1994) Time to exhaustion at VO2max and lactate steady state velocity in sub-elite long-distance runners. Arch Int Physiol Biochem Biophys 102:215–219 Billat V, Bernard O, Pinoteau J, Petit B, Koralsztein JP (1994) Time to exhaustion at VO2max and lactate steady state velocity in sub-elite long-distance runners. Arch Int Physiol Biochem Biophys 102:215–219
Zurück zum Zitat Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP (2000) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81:188–196PubMedCrossRef Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP (2000) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81:188–196PubMedCrossRef
Zurück zum Zitat Bogdanis GC, Nevill ME, Lakomy HK, Graham CM, Louis G (1996) Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol 74:461–469 Bogdanis GC, Nevill ME, Lakomy HK, Graham CM, Louis G (1996) Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol 74:461–469
Zurück zum Zitat Dorado C, Sanchis-Moysi J, Calbert JAL (2004) Effects of recovery mode on performance, O2 uptake, and O2 deficit during high intensity intermittent exercise. Can J Appl Physiol 29(3):227–244PubMed Dorado C, Sanchis-Moysi J, Calbert JAL (2004) Effects of recovery mode on performance, O2 uptake, and O2 deficit during high intensity intermittent exercise. Can J Appl Physiol 29(3):227–244PubMed
Zurück zum Zitat Dupont G, Berthoin S (2004) Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol 29(suppl):S3–S16PubMed Dupont G, Berthoin S (2004) Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol 29(suppl):S3–S16PubMed
Zurück zum Zitat Dupont G, Blondel N, Berthoin S (2003a) Performance for short intermittent runs: active vs. passive recovery. Eur J Appl Physiol 89:548–554CrossRef Dupont G, Blondel N, Berthoin S (2003a) Performance for short intermittent runs: active vs. passive recovery. Eur J Appl Physiol 89:548–554CrossRef
Zurück zum Zitat Dupont G, Blondel N, Berthoin S (2003b) Time spent at VO2max: a methodological issue. Int J Sports Med 24:291–297CrossRef Dupont G, Blondel N, Berthoin S (2003b) Time spent at VO2max: a methodological issue. Int J Sports Med 24:291–297CrossRef
Zurück zum Zitat Fox E (1975) Differences in metabolic alterations with sprint versus endurance interval training. In: Howald H, Poortmans J (eds) Metabolic adaptation to prolonged physical exercise. Birkha-user, Basel, pp 119–126 Fox E (1975) Differences in metabolic alterations with sprint versus endurance interval training. In: Howald H, Poortmans J (eds) Metabolic adaptation to prolonged physical exercise. Birkha-user, Basel, pp 119–126
Zurück zum Zitat Gallagher CG, Hof VI, Younes M (1985) Effect of inspiratory muscle fatigue on breathing pattern. J Appl Physiol 59:1152–1158PubMed Gallagher CG, Hof VI, Younes M (1985) Effect of inspiratory muscle fatigue on breathing pattern. J Appl Physiol 59:1152–1158PubMed
Zurück zum Zitat Geor RJ, McCutcheon LJ, Hinchcliff KW (2000) Effects of warm-up intensity on kinetics of oxygen consumption and carbon dioxide production during high-intensity exercise in horses. Am J Vet Res 61:638–645PubMedCrossRef Geor RJ, McCutcheon LJ, Hinchcliff KW (2000) Effects of warm-up intensity on kinetics of oxygen consumption and carbon dioxide production during high-intensity exercise in horses. Am J Vet Res 61:638–645PubMedCrossRef
Zurück zum Zitat Gerbino A, Ward SA, Whipp BL (1996) Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol 80:99–107PubMed Gerbino A, Ward SA, Whipp BL (1996) Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol 80:99–107PubMed
Zurück zum Zitat Gisolfi C, Robinson S, Turrel ES (1966) Effects of aerobic work performed during recovery from exhausting work. J Appl Physiol 21:1767–1772PubMed Gisolfi C, Robinson S, Turrel ES (1966) Effects of aerobic work performed during recovery from exhausting work. J Appl Physiol 21:1767–1772PubMed
Zurück zum Zitat Gonzalez-Alonso J, Calbet JAL (2003) Reductions in systemic muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 107:824–830PubMedCrossRef Gonzalez-Alonso J, Calbet JAL (2003) Reductions in systemic muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 107:824–830PubMedCrossRef
Zurück zum Zitat Gorostiaga EM, Walter CB, Foster C, Hickson RC (1991) Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol 63:101–107CrossRef Gorostiaga EM, Walter CB, Foster C, Hickson RC (1991) Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol 63:101–107CrossRef
Zurück zum Zitat Harms CA, Badcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82:1573–1583PubMed Harms CA, Badcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82:1573–1583PubMed
Zurück zum Zitat Hermansen L (1981) Effect of metabolic changes on force generation in skeletel muscle during maximal exercise. In: Ciba Foundation Symposium (C.F.S) (ed) Human muscle fatigue: physiological mechanisms, vol 82. Pitman Medical, London, pp 75–88 Hermansen L (1981) Effect of metabolic changes on force generation in skeletel muscle during maximal exercise. In: Ciba Foundation Symposium (C.F.S) (ed) Human muscle fatigue: physiological mechanisms, vol 82. Pitman Medical, London, pp 75–88
Zurück zum Zitat Hermansen L, Stensvold I (1972) Production and removal of lactate during exercise in man. Acta Physiol Scand 86:191–201PubMed Hermansen L, Stensvold I (1972) Production and removal of lactate during exercise in man. Acta Physiol Scand 86:191–201PubMed
Zurück zum Zitat Hill DW, Rowell AL (1997) Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc 29:113–116PubMed Hill DW, Rowell AL (1997) Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc 29:113–116PubMed
Zurück zum Zitat Hill DW, Williams CS, Burt SE (1997) Responses to exercise at 92% and 100% of the velocity associated with VO2max. Int J Sports Med 18:325–329PubMed Hill DW, Williams CS, Burt SE (1997) Responses to exercise at 92% and 100% of the velocity associated with VO2max. Int J Sports Med 18:325–329PubMed
Zurück zum Zitat Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838PubMed Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838PubMed
Zurück zum Zitat Jones AM, Carter H (2000) The effect of endurance training on parameter of aerobic fitness. Sports Med 29(6):373–386PubMedCrossRef Jones AM, Carter H (2000) The effect of endurance training on parameter of aerobic fitness. Sports Med 29(6):373–386PubMedCrossRef
Zurück zum Zitat Jones NL, Sutton JR, Taylor R, Toews CJ (1977) Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 43:959–964PubMed Jones NL, Sutton JR, Taylor R, Toews CJ (1977) Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 43:959–964PubMed
Zurück zum Zitat Jones AM, Koppo K, Burnley M (2003) Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med 33:949–971PubMedCrossRef Jones AM, Koppo K, Burnley M (2003) Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med 33:949–971PubMedCrossRef
Zurück zum Zitat Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201PubMedCrossRef Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201PubMedCrossRef
Zurück zum Zitat MacDonald MJ, Pedersen PK, Hughson RL (1997) Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J Appl Physiol 83:1318–1325PubMed MacDonald MJ, Pedersen PK, Hughson RL (1997) Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J Appl Physiol 83:1318–1325PubMed
Zurück zum Zitat McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284PubMedCrossRef McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284PubMedCrossRef
Zurück zum Zitat Metzger JM and Fitts RH (1987) Role of intracellular pH in muscle fatigue. J Appl Physiol 62:1392–1397PubMed Metzger JM and Fitts RH (1987) Role of intracellular pH in muscle fatigue. J Appl Physiol 62:1392–1397PubMed
Zurück zum Zitat Midgley AW, McNaughton LR (2006) Time at or near VO2max during continuous and intermittent running: A review with special reference to considerations for the optimization of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys fitness 46:1–14PubMed Midgley AW, McNaughton LR (2006) Time at or near VO2max during continuous and intermittent running: A review with special reference to considerations for the optimization of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys fitness 46:1–14PubMed
Zurück zum Zitat Millet GP, Candau R, Fattori P, Bignet F, Varray A (2003a) VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol 28:410–423 Millet GP, Candau R, Fattori P, Bignet F, Varray A (2003a) VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol 28:410–423
Zurück zum Zitat Millet GP, Libicz S, Borrani F, Fattori P, Bignet F, Candau R (2003b) Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol 90:50–57 Millet GP, Libicz S, Borrani F, Fattori P, Bignet F, Candau R (2003b) Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol 90:50–57
Zurück zum Zitat Nielsen HB, Hein L, Svendsen LB, Secher NH, Quistorff B (2002) Bicarbonate attenuates intracellular acidosis. Acta Anaesthesiol Scand 46:579–584PubMedCrossRef Nielsen HB, Hein L, Svendsen LB, Secher NH, Quistorff B (2002) Bicarbonate attenuates intracellular acidosis. Acta Anaesthesiol Scand 46:579–584PubMedCrossRef
Zurück zum Zitat Noakes TD (1991) Lore of running. Leisure Press, Champaign, IL, p 450 Noakes TD (1991) Lore of running. Leisure Press, Champaign, IL, p 450
Zurück zum Zitat Perrey S, Candau R, Millet GY, Borrani F, Rouillon JD (2002) Decrease in oxygen uptake at the end of a high-intensity submaximal running in humans. Int J Sports Med 23:298–304PubMedCrossRef Perrey S, Candau R, Millet GY, Borrani F, Rouillon JD (2002) Decrease in oxygen uptake at the end of a high-intensity submaximal running in humans. Int J Sports Med 23:298–304PubMedCrossRef
Zurück zum Zitat Robinson DM, Robinson SM, Hume PA, Hopkins WG (1991) Training intensity of elite male distance runners. Med Sci Sports Exerc 23:1078–1082PubMed Robinson DM, Robinson SM, Hume PA, Hopkins WG (1991) Training intensity of elite male distance runners. Med Sci Sports Exerc 23:1078–1082PubMed
Zurück zum Zitat Sahlin K (1983) Effect of acidosis on energy metabolism and force generation in skeletel muscle. In: Knuttgen HG, Vogel JA, Portmans JR (eds) Biochemistry of exercise V. Human Kinetics, Champaign, pp 151–160 Sahlin K (1983) Effect of acidosis on energy metabolism and force generation in skeletel muscle. In: Knuttgen HG, Vogel JA, Portmans JR (eds) Biochemistry of exercise V. Human Kinetics, Champaign, pp 151–160
Zurück zum Zitat Septo NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31:736–741CrossRef Septo NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31:736–741CrossRef
Zurück zum Zitat Signorile JF, Ingalls C, Tremblay LM (1993) The effects of active and passive recovery on short-term, high-intensity power output. Can J Appl Physiol 18:31–42PubMed Signorile JF, Ingalls C, Tremblay LM (1993) The effects of active and passive recovery on short-term, high-intensity power output. Can J Appl Physiol 18:31–42PubMed
Zurück zum Zitat Stackhouse SK, Reisman DS, Binder-Macleod SA (2001) Challenging the role of pH in skeletal muscle fatigue. Phys Ter 81:1897–1903 Stackhouse SK, Reisman DS, Binder-Macleod SA (2001) Challenging the role of pH in skeletal muscle fatigue. Phys Ter 81:1897–1903
Zurück zum Zitat Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61:331–338PubMed Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61:331–338PubMed
Zurück zum Zitat Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28:1327–1330PubMed Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28:1327–1330PubMed
Zurück zum Zitat Tardieu-Berger M, Thevenet D, Zouhal H, Prioux J (2004) Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol 93:145–152PubMed Tardieu-Berger M, Thevenet D, Zouhal H, Prioux J (2004) Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol 93:145–152PubMed
Zurück zum Zitat Taylor H, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardiorespiratory performance. J Appl Physiol 8:73–80PubMed Taylor H, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardiorespiratory performance. J Appl Physiol 8:73–80PubMed
Zurück zum Zitat Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (1994) Principle of exercise testing and interpretation, 2nd edn. Lea and Febiger, Philadelphia, pp 126–127 Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (1994) Principle of exercise testing and interpretation, 2nd edn. Lea and Febiger, Philadelphia, pp 126–127
Zurück zum Zitat Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3:346–356PubMed Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3:346–356PubMed
Zurück zum Zitat Whipp B, Ward S, Wasserman K (1984) Ventilatory responses to exercise and their control in man. Am Rev Respir Dis 129(2pt2):S17–S20 Whipp B, Ward S, Wasserman K (1984) Ventilatory responses to exercise and their control in man. Am Rev Respir Dis 129(2pt2):S17–S20
Metadaten
Titel
Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes
verfasst von
Delphine Thevenet
Magaly Tardieu-Berger
Serge Berthoin
Jacques Prioux
Publikationsdatum
01.01.2007
Verlag
Springer-Verlag
Erschienen in
European Journal of Applied Physiology / Ausgabe 2/2007
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-006-0327-1

Weitere Artikel der Ausgabe 2/2007

European Journal of Applied Physiology 2/2007 Zur Ausgabe