Skip to main content
Erschienen in: Langenbeck's Archives of Surgery 1/2013

01.01.2013 | Review Article

Inflammatory bowel disease: an impaired barrier disease

verfasst von: Simon Jäger, Eduard F. Stange, Jan Wehkamp

Erschienen in: Langenbeck's Archives of Surgery | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

The intestinal barrier is a delicate structure composed of a single layer of epithelial cells, the mucus, commensal bacteria, immune cells, and antibodies. Furthermore, a wealth of antimicrobial peptides (AMPs) can be found in the mucus and defend the mucosa. Different lines of investigations now point to a prominent pathophysiological role of defensins, an important family of AMPs, in the pathogenesis of inflammatory bowel disease and, particularly, in small intestinal Crohn’s disease.

Purpose

In this review, we introduce the different antimicrobial peptides of the intestinal mucosa and describe their function, their expression pattern along the gastrointestinal tract, and their spatial relationship to the mucus layer. We then focus on the alterations found in inflammatory bowel disease. Small intestinal Crohn’s disease (CD) is closely linked to defects in Paneth cells (specialized secretory epithelial cells at the bottom crypts) which secrete α-defensin human defensin (HD)-5 in huge quantities in healthy individuals. Decreased expression of these antimicrobial peptides is found in ileal CD, and single nucleotide polymorphisms with the highest linkage to CD affect genes involved in Paneth cell biology and defensin secretion. Additionally, antimicrobial peptides have a role in ulcerative colitis, where the depleted mucus layer cannot fulfill its crucial function of binding defensins and other AMPs to their proper site of action.

Conclusion

Inflammatory bowel disease arises when the mucosal barrier is compromised in its defense against challenges from the intestinal microbiota. In ileal CD, a strong association can be found between diminished expression or defective function of defensins and the advent of intestinal inflammation.
Literatur
2.
Zurück zum Zitat Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24(4):523–530PubMedCrossRef Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24(4):523–530PubMedCrossRef
3.
Zurück zum Zitat Wehkamp J, Fellermann K, Herrlinger KR et al (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14(7):745–752PubMedCrossRef Wehkamp J, Fellermann K, Herrlinger KR et al (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14(7):745–752PubMedCrossRef
4.
Zurück zum Zitat Wehkamp J, Chu H, Shen B et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580(22):5344–5350PubMedCrossRef Wehkamp J, Chu H, Shen B et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580(22):5344–5350PubMedCrossRef
5.
Zurück zum Zitat Sallenave JM (2002) Antimicrobial activity of antiproteinases. Biochem Soc Trans 30(2):111–115PubMedCrossRef Sallenave JM (2002) Antimicrobial activity of antiproteinases. Biochem Soc Trans 30(2):111–115PubMedCrossRef
6.
Zurück zum Zitat Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMedCrossRef Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMedCrossRef
7.
Zurück zum Zitat Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720PubMedCrossRef Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720PubMedCrossRef
8.
Zurück zum Zitat Shen B, Porter EM, Reynoso E et al (2005) Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J Clin Pathol 58(7):687–694PubMedCrossRef Shen B, Porter EM, Reynoso E et al (2005) Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J Clin Pathol 58(7):687–694PubMedCrossRef
9.
Zurück zum Zitat Ghosh D, Porter EM, Wilk DJ, Poles MA, Ganz T, Bevins CL (2000) Proteolytic cleavage of human intestinal defensin 5 (HD5) precursor by intestinal proteases. Gastroenterology 118(4):A839CrossRef Ghosh D, Porter EM, Wilk DJ, Poles MA, Ganz T, Bevins CL (2000) Proteolytic cleavage of human intestinal defensin 5 (HD5) precursor by intestinal proteases. Gastroenterology 118(4):A839CrossRef
10.
Zurück zum Zitat Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590PubMedCrossRef Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590PubMedCrossRef
11.
Zurück zum Zitat Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337(6093):477–481PubMedCrossRef Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337(6093):477–481PubMedCrossRef
12.
Zurück zum Zitat Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396(2–3):319–322PubMedCrossRef Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396(2–3):319–322PubMedCrossRef
13.
Zurück zum Zitat Pazgier M, Prahl A, Hoover DM, Lubkowski J (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282(3):1819–1829PubMedCrossRef Pazgier M, Prahl A, Hoover DM, Lubkowski J (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282(3):1819–1829PubMedCrossRef
14.
Zurück zum Zitat Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703PubMedCrossRef Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703PubMedCrossRef
15.
Zurück zum Zitat Sass V, Schneider T, Wilmes M et al (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78(6):2793–2800PubMedCrossRef Sass V, Schneider T, Wilmes M et al (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78(6):2793–2800PubMedCrossRef
16.
Zurück zum Zitat Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423PubMedCrossRef Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423PubMedCrossRef
17.
18.
Zurück zum Zitat Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528PubMedCrossRef Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528PubMedCrossRef
19.
Zurück zum Zitat Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184(12):6688–6694PubMedCrossRef Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184(12):6688–6694PubMedCrossRef
20.
Zurück zum Zitat Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426PubMedCrossRef Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426PubMedCrossRef
21.
Zurück zum Zitat Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111(3):273–281PubMedCrossRef Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111(3):273–281PubMedCrossRef
22.
Zurück zum Zitat de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Lett 583(15):2507–2512PubMedCrossRef de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Lett 583(15):2507–2512PubMedCrossRef
23.
Zurück zum Zitat Kotarsky K, Sitnik KM, Stenstad H et al (2010) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40–48PubMedCrossRef Kotarsky K, Sitnik KM, Stenstad H et al (2010) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40–48PubMedCrossRef
24.
Zurück zum Zitat Peyrin-Biroulet L, Chamaillard M (2007) NOD2 and defensins: translating innate to adaptive immunity in Crohn’s disease. J Endotoxin Res 13(3):135–139PubMedCrossRef Peyrin-Biroulet L, Chamaillard M (2007) NOD2 and defensins: translating innate to adaptive immunity in Crohn’s disease. J Endotoxin Res 13(3):135–139PubMedCrossRef
25.
Zurück zum Zitat Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196PubMed Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196PubMed
26.
Zurück zum Zitat Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 1781(1–2):1–9PubMed Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 1781(1–2):1–9PubMed
27.
Zurück zum Zitat Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130PubMedCrossRef Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130PubMedCrossRef
28.
Zurück zum Zitat Medveczky P, Szmola R, Sahin-Toth M (2009) Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 420(2):335–343PubMedCrossRef Medveczky P, Szmola R, Sahin-Toth M (2009) Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 420(2):335–343PubMedCrossRef
29.
Zurück zum Zitat Canny G, Cario E, Lennartsson A et al (2006) Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am J Physiol Gastrointest Liver Physiol 290(3):G557–G567PubMedCrossRef Canny G, Cario E, Lennartsson A et al (2006) Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am J Physiol Gastrointest Liver Physiol 290(3):G557–G567PubMedCrossRef
30.
Zurück zum Zitat Canny G, Levy O, Furuta GT et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A 99(6):3902–3907PubMedCrossRef Canny G, Levy O, Furuta GT et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A 99(6):3902–3907PubMedCrossRef
31.
Zurück zum Zitat Jager S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm 2010:910283 Jager S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm 2010:910283
32.
Zurück zum Zitat Stange EF (2009) For bugs in bile: the times they are a-changin’. Gastroenterology 136(4):1164–1167PubMedCrossRef Stange EF (2009) For bugs in bile: the times they are a-changin’. Gastroenterology 136(4):1164–1167PubMedCrossRef
33.
Zurück zum Zitat Johansson ME, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68(22):3635–3641PubMedCrossRef Johansson ME, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68(22):3635–3641PubMedCrossRef
34.
Zurück zum Zitat Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665PubMedCrossRef Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665PubMedCrossRef
35.
Zurück zum Zitat Subramani DB, Johansson ME, Dahlen G, Hansson GC (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benefic Microbes 1(4):343–350CrossRef Subramani DB, Johansson ME, Dahlen G, Hansson GC (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benefic Microbes 1(4):343–350CrossRef
36.
Zurück zum Zitat Meyer-Hoffert U, Hornef MW, Henriques-Normark B et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771PubMedCrossRef Meyer-Hoffert U, Hornef MW, Henriques-Normark B et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771PubMedCrossRef
37.
Zurück zum Zitat Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258PubMedCrossRef Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258PubMedCrossRef
38.
Zurück zum Zitat Satsangi J, Silverberg MS, Vermeire S, Colombel JF (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55(6):749–753PubMedCrossRef Satsangi J, Silverberg MS, Vermeire S, Colombel JF (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55(6):749–753PubMedCrossRef
39.
Zurück zum Zitat Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123(1):86–91PubMedCrossRef Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123(1):86–91PubMedCrossRef
40.
Zurück zum Zitat Hoffmann JC, Preiss JC, Autschbach F et al (2008) Clinical practice guideline on diagnosis and treatment of Crohn’s disease. Z Gastroenterol 46(9):1094–1146PubMedCrossRef Hoffmann JC, Preiss JC, Autschbach F et al (2008) Clinical practice guideline on diagnosis and treatment of Crohn’s disease. Z Gastroenterol 46(9):1094–1146PubMedCrossRef
41.
Zurück zum Zitat Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125PubMedCrossRef Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125PubMedCrossRef
42.
Zurück zum Zitat Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252PubMedCrossRef Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252PubMedCrossRef
44.
Zurück zum Zitat Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134PubMedCrossRef Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134PubMedCrossRef
45.
Zurück zum Zitat Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863PubMedCrossRef Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863PubMedCrossRef
46.
Zurück zum Zitat Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106(37):15813–15818PubMedCrossRef Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106(37):15813–15818PubMedCrossRef
47.
Zurück zum Zitat Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83PubMedCrossRef Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83PubMedCrossRef
48.
Zurück zum Zitat Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874PubMedCrossRef Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874PubMedCrossRef
49.
Zurück zum Zitat Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962PubMedCrossRef Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962PubMedCrossRef
50.
Zurück zum Zitat Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57PubMedCrossRef Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57PubMedCrossRef
51.
Zurück zum Zitat Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117PubMedCrossRef Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117PubMedCrossRef
52.
Zurück zum Zitat Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910PubMedCrossRef Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910PubMedCrossRef
53.
Zurück zum Zitat Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172(3):702–713PubMedCrossRef Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172(3):702–713PubMedCrossRef
54.
Zurück zum Zitat Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381PubMedCrossRef Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381PubMedCrossRef
55.
Zurück zum Zitat Hampe J, Cuthbert A, Croucher PJ et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s di German and British populations. Lancet 357(9272):1925–1928, 2001; 357:1925–1928PubMedCrossRef Hampe J, Cuthbert A, Croucher PJ et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s di German and British populations. Lancet 357(9272):1925–1928, 2001; 357:1925–1928PubMedCrossRef
56.
Zurück zum Zitat Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263PubMedCrossRef Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263PubMedCrossRef
57.
Zurück zum Zitat Thachil E, Hugot JP, Arbeille B et al (2012) Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with Crohn’s disease. Gastroenterology 142(5):1097–1099PubMedCrossRef Thachil E, Hugot JP, Arbeille B et al (2012) Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with Crohn’s disease. Gastroenterology 142(5):1097–1099PubMedCrossRef
58.
Zurück zum Zitat Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMedCrossRef Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMedCrossRef
59.
Zurück zum Zitat van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386PubMedCrossRef van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386PubMedCrossRef
60.
Zurück zum Zitat Wehkamp J, Wang G, Kubler I et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118PubMed Wehkamp J, Wang G, Kubler I et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118PubMed
61.
Zurück zum Zitat Koslowski MJ, Kubler I, Chamaillard M et al (2009) Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One 4(2):e4496PubMedCrossRef Koslowski MJ, Kubler I, Chamaillard M et al (2009) Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One 4(2):e4496PubMedCrossRef
62.
Zurück zum Zitat Koslowski MJ, Teltschik Z, Beisner J et al (2012) Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 8(2):e1002523PubMedCrossRef Koslowski MJ, Teltschik Z, Beisner J et al (2012) Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 8(2):e1002523PubMedCrossRef
63.
Zurück zum Zitat Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+−activated, intermediate conductance potassium channel. J Biol Chem 277(5):3793–3800PubMedCrossRef Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+−activated, intermediate conductance potassium channel. J Biol Chem 277(5):3793–3800PubMedCrossRef
64.
Zurück zum Zitat Simms LA, Doecke JD, Roberts RL et al (2010) KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol 105(10):2209–2217PubMedCrossRef Simms LA, Doecke JD, Roberts RL et al (2010) KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol 105(10):2209–2217PubMedCrossRef
65.
Zurück zum Zitat Gunther C, Martini E, Wittkopf N et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364):335–339PubMedCrossRef Gunther C, Martini E, Wittkopf N et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364):335–339PubMedCrossRef
67.
Zurück zum Zitat Hollox EJ, Barber JC, Brookes AJ, Armour JA (2008) Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res 18(11):1686–1697PubMedCrossRef Hollox EJ, Barber JC, Brookes AJ, Armour JA (2008) Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res 18(11):1686–1697PubMedCrossRef
68.
Zurück zum Zitat Kocsis AK, Lakatos PL, Somogyvari F et al (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43(3):299–307PubMedCrossRef Kocsis AK, Lakatos PL, Somogyvari F et al (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43(3):299–307PubMedCrossRef
69.
Zurück zum Zitat Peyrin-Biroulet L, Beisner J, Wang G et al (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci U S A 107(19):8772–8777PubMedCrossRef Peyrin-Biroulet L, Beisner J, Wang G et al (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci U S A 107(19):8772–8777PubMedCrossRef
70.
Zurück zum Zitat Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9(4):215–223PubMedCrossRef Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9(4):215–223PubMedCrossRef
71.
Zurück zum Zitat Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42(11):2430–2439PubMedCrossRef Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42(11):2430–2439PubMedCrossRef
72.
Zurück zum Zitat Zilbauer M, Dorrell N, Boughan PK et al (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289PubMedCrossRef Zilbauer M, Dorrell N, Boughan PK et al (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289PubMedCrossRef
73.
Zurück zum Zitat Mondel M, Schroeder BO, Zimmermann K et al (2008) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172PubMedCrossRef Mondel M, Schroeder BO, Zimmermann K et al (2008) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172PubMedCrossRef
74.
Zurück zum Zitat Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758PubMedCrossRef Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758PubMedCrossRef
75.
Zurück zum Zitat Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567PubMedCrossRef Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567PubMedCrossRef
76.
Zurück zum Zitat Aldhous MC, Noble CL, Satsangi J (2009) Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 4(7):e6285PubMedCrossRef Aldhous MC, Noble CL, Satsangi J (2009) Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 4(7):e6285PubMedCrossRef
77.
Zurück zum Zitat Nuding S, Fellermann K, Wehkamp J, Stange EF (2007) Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 56(9):1240–1247PubMedCrossRef Nuding S, Fellermann K, Wehkamp J, Stange EF (2007) Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 56(9):1240–1247PubMedCrossRef
78.
Zurück zum Zitat Fellermann K, Stange DE, Schaeffeler E et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448PubMedCrossRef Fellermann K, Stange DE, Schaeffeler E et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448PubMedCrossRef
79.
Zurück zum Zitat Bentley RW, Pearson J, Gearry RB et al (2009) Association of higher DEFB4 genomic copy number with Crohn’s disease. Am J Gastroenterol 105(2):354–359PubMedCrossRef Bentley RW, Pearson J, Gearry RB et al (2009) Association of higher DEFB4 genomic copy number with Crohn’s disease. Am J Gastroenterol 105(2):354–359PubMedCrossRef
80.
Zurück zum Zitat Hollox EJ, Armour JA, Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73(3):591–600PubMedCrossRef Hollox EJ, Armour JA, Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73(3):591–600PubMedCrossRef
81.
Zurück zum Zitat Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011PubMedCrossRef Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011PubMedCrossRef
82.
Zurück zum Zitat Mastroianni JR, Ouellette AJ (2009) Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 284(41):27848–27856PubMedCrossRef Mastroianni JR, Ouellette AJ (2009) Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 284(41):27848–27856PubMedCrossRef
83.
Zurück zum Zitat Cunliffe RN, Rose FRAJ, Keyte J, Abberley L, Chan WC, Mahida YR (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some viloous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185PubMedCrossRef Cunliffe RN, Rose FRAJ, Keyte J, Abberley L, Chan WC, Mahida YR (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some viloous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185PubMedCrossRef
84.
Zurück zum Zitat Langhorst J, Junge A, Rueffer A et al (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104(2):404–410PubMedCrossRef Langhorst J, Junge A, Rueffer A et al (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104(2):404–410PubMedCrossRef
85.
Zurück zum Zitat Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30(2):116–120PubMedCrossRef Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30(2):116–120PubMedCrossRef
86.
Zurück zum Zitat Schmid M, Fellermann K, Fritz P, Wiedow O, Stange EF, Wehkamp J (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s disease. J Leukoc Biol. doi:10.1189/jlb.0906581 Schmid M, Fellermann K, Fritz P, Wiedow O, Stange EF, Wehkamp J (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s disease. J Leukoc Biol. doi:10.​1189/​jlb.​0906581
87.
Zurück zum Zitat Schauber J, Rieger D, Weiler F et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621PubMedCrossRef Schauber J, Rieger D, Weiler F et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621PubMedCrossRef
88.
Zurück zum Zitat Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174(8):4901–4907PubMed Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174(8):4901–4907PubMed
89.
Zurück zum Zitat Dignass A, Preiss JC, Aust DE et al (2011) Updated German guideline on diagnosis and treatment of ulcerative colitis, 2011. Z Gastroenterol 49(9):1276–1341PubMedCrossRef Dignass A, Preiss JC, Aust DE et al (2011) Updated German guideline on diagnosis and treatment of ulcerative colitis, 2011. Z Gastroenterol 49(9):1276–1341PubMedCrossRef
90.
Zurück zum Zitat Kiehne K, Brunke G, Meyer D, Harder J, Herzig KH (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40(5):501–507PubMedCrossRef Kiehne K, Brunke G, Meyer D, Harder J, Herzig KH (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40(5):501–507PubMedCrossRef
91.
Zurück zum Zitat Scarpa M, Grillo A, Scarpa M et al (2012) Innate immune environment in ileal pouch mucosa: alpha5 defensin up-regulation as predictor of chronic/relapsing pouchitis. J Gastrointest Surg 16(1):188–201PubMedCrossRef Scarpa M, Grillo A, Scarpa M et al (2012) Innate immune environment in ileal pouch mucosa: alpha5 defensin up-regulation as predictor of chronic/relapsing pouchitis. J Gastrointest Surg 16(1):188–201PubMedCrossRef
92.
Zurück zum Zitat Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54(7):896–898PubMedCrossRef Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54(7):896–898PubMedCrossRef
93.
Zurück zum Zitat Khan KJ, Ullman TA, Ford AC et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673PubMedCrossRef Khan KJ, Ullman TA, Ford AC et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673PubMedCrossRef
94.
Zurück zum Zitat Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932PubMedCrossRef Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932PubMedCrossRef
95.
Zurück zum Zitat Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54(1):87–90PubMedCrossRef Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54(1):87–90PubMedCrossRef
96.
Zurück zum Zitat Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128(4):825–832PubMedCrossRef Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128(4):825–832PubMedCrossRef
97.
Zurück zum Zitat Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494PubMedCrossRef Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494PubMedCrossRef
98.
Zurück zum Zitat Doetze A, Satoguina J, Burchard G et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12(5):623–630PubMedCrossRef Doetze A, Satoguina J, Burchard G et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12(5):623–630PubMedCrossRef
99.
Zurück zum Zitat Hunter MM, Wang A, McKay DM (2007) Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 132(4):1320–1330PubMedCrossRef Hunter MM, Wang A, McKay DM (2007) Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 132(4):1320–1330PubMedCrossRef
100.
Zurück zum Zitat Bager P, Arnved J, Ronborg S et al (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125(1):123–130PubMedCrossRef Bager P, Arnved J, Ronborg S et al (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125(1):123–130PubMedCrossRef
101.
Zurück zum Zitat Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol 124(5):1080–1082PubMedCrossRef Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol 124(5):1080–1082PubMedCrossRef
102.
Zurück zum Zitat Wang TT, Dabbas B, Laperriere D et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285(4):2227–2231PubMedCrossRef Wang TT, Dabbas B, Laperriere D et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285(4):2227–2231PubMedCrossRef
103.
Zurück zum Zitat Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133PubMedCrossRef Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133PubMedCrossRef
104.
Zurück zum Zitat Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535PubMedCrossRef Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535PubMedCrossRef
Metadaten
Titel
Inflammatory bowel disease: an impaired barrier disease
verfasst von
Simon Jäger
Eduard F. Stange
Jan Wehkamp
Publikationsdatum
01.01.2013
Verlag
Springer-Verlag
Erschienen in
Langenbeck's Archives of Surgery / Ausgabe 1/2013
Print ISSN: 1435-2443
Elektronische ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-012-1030-9

Weitere Artikel der Ausgabe 1/2013

Langenbeck's Archives of Surgery 1/2013 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.