Skip to main content

Advertisement

Log in

In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain

  • Original Article
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract.

A blind patch-clamp technique for in vivo whole-cell recordings in the intact brain is described. Recordings were obtained from various neuronal cell types located 100–5,000 µm from the cortical surface. Access resistance of recordings was as low as 10 MΩ but increased with recording depth and animal age. Recordings were remarkably stable and it was therefore possible to obtain whole-cell recordings in awake, head-fixed animals. The whole-cell configuration permitted rapid dialysis of cells with a calcium buffer. In most neurons very little ongoing action potential (AP) activity was observed and the spontaneous firing rates were up to 50-fold less than what has been reported by extracellular unit recordings. AP firing in the brain might therefore be far sparser than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch - Eur J Physiol 444, 491–498 (2002). https://doi.org/10.1007/s00424-002-0831-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-002-0831-z

Navigation