Skip to main content

Advertisement

Log in

Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Neurogenic inflammation is produced by overstimulation of peripheral nociceptor terminals by injury or inflammation of tissues. Excessive activity of sensory neurons produces vasodilation, plasma extravasation and hypersensitivity. Mechanistically, neurogenic inflammation is due to the release of substances from primary sensory nerve terminals that act directly or indirectly at the peripheral terminals, either activating or sensitizing nociceptors, endothelial cells and immunocytes. Notably, small-diameter sensory neurons that are sensitive to capsaicin play a key role in the generation of neurogenic inflammation. The cloning of the vanilloid receptor 1 (TRPV1) has been a breakthrough that has propelled our understanding of the molecular mechanisms involved in neurogenic inflammation. TRPV1 pivotally contributes to the integration of various stimuli and modulates nociceptor excitability, thus making it a true gateway for pain transduction. In addition, TRPV1 is the endpoint target of intracellular signalling pathways triggered by inflammatory mediators. Phosphorylation-induced potentiation of TRPV1 channel activity, along with an incremented TRPV1 surface expression are major events underlying the nociceptor activation and sensitization that leads to thermal hyperalgesia. The important contribution of TRPV1 receptor to the onset and maintenance of neurogenic inflammation has validated it as a therapeutic target for inflammatory pain management. As a result, the development of specific TRPV1 antagonists is a central focus of current drug discovery programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmari SE, Buchanan J, Smith SJ (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 3:445–451

    Article  CAS  PubMed  Google Scholar 

  2. Akiba Y, Furukawa O, Guth PH, Engel E, Nastaskin I, Kaunitz JD (2001) Sensory pathways and cyclooxygenase regulate mucus gel thickness in rat duodenum. Am J Physiol 280:G470–G474

    CAS  Google Scholar 

  3. Alstergren P, Appelgren A, Appelgren B, Kopp S, Lundeberg T, Theodorsson E (1995) Co-variation of neuropeptide Y, calcitonin gene-related peptide, substance P and neurokinin A in joint fluid from patients with temporomandibular joint arthritis. Arch Oral Biol 40:127–135

    Article  CAS  PubMed  Google Scholar 

  4. Amaya F, Oh-jasjo K, Naruse Y, Iijima N, Ueda M, Shimosato G, Tominaga M, Tanaka Y, Tanaka M (2003) Local inflammation increases vanilloid receptor I expression within distinct subgroups of DRG neurons. Brain Res 963:190–196

    Article  CAS  PubMed  Google Scholar 

  5. Amaya F, Shimosato G, Nagano M, Ueda M, Hashimoto S, Tanaka Y, Suzuki H, Tanaka M (2004) NGF and GDNF differentially regulate TRPV1 expression that contribute to development of inflammatory thermal hyperalgesia. Eur J Neurosci 20:2303–2310

    Article  PubMed  Google Scholar 

  6. Avelino A, Cruz C, Nagy I, Cruz F (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109:787–798

    Article  CAS  PubMed  Google Scholar 

  7. Bernardini N, Neuhuber W, Reeh PW, Sauer SK (2004) Morphological evidence for functional capsaicin receptor expression and calcitonin gene-related peptide exocytosis in isolated peripheral nerve axons of the mouse. Neuroscience 126:585–590

    Article  CAS  PubMed  Google Scholar 

  8. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW IV (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721–731

    Article  CAS  PubMed  Google Scholar 

  9. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW IV (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 100:12480–12485

    Article  CAS  PubMed  Google Scholar 

  10. Bhave G, Gereau RW IV (2004) Posttranslational mechanisms of peripheral sensitization. Int J Neurobiol 61:88–106

    Article  Google Scholar 

  11. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    Article  CAS  PubMed  Google Scholar 

  12. Bonnington JK, McNaughton PA (2003) Signalling pathways involved in the sensitization of mouse nociceptive neurones by nerve growth factor. J Physiol 551:433–446

    Article  CAS  PubMed  Google Scholar 

  13. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56

    Article  CAS  PubMed  Google Scholar 

  14. Brain SD (1997) Sensory neuropeptides in inflammation and wound healing. Immunopharmacology 37:133–152

    Article  CAS  PubMed  Google Scholar 

  15. Carr MJ, Hunter DD, Jacoby DB, Undem BJ (2002) Expression of tachykinins in nociceptive vagal afferent neurons during respiratory viral infection in guinea pigs. Am J Respir 165:1071–1075

    Google Scholar 

  16. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  17. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  CAS  PubMed  Google Scholar 

  18. Caterina MJ, Julius D (2001) The vanilloid receptor: A molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  19. Cesare P, McNaughton P (1997) Peripheral pain mechanisms. Curr Opin Neurobiol 7:457–482

    Article  Google Scholar 

  20. Chleda MG, Ashery U, Thakur P, Rettig J, Sheng ZH (2001) Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 3:331–338

    Article  PubMed  Google Scholar 

  21. Chu CJ, Huang SM, De Petrocellis L, Bisogno T, Ewing SA, Miller JA, Zipkin RE, Daddario N, Appendino G, Di Marzo V, Walker JM (2003) N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278:13633–13639

    Article  CAS  PubMed  Google Scholar 

  22. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  CAS  PubMed  Google Scholar 

  23. Crandall M, Kwash J, Yu W, White G (2002) Activation of protein kinase C sensitizes human VR1 to capsaicin and to moderate decreases in pH at physiological temperatures in Xenopus oocytes. Pain 98:109–117

    Article  CAS  PubMed  Google Scholar 

  24. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405(6783):183–187

    Article  CAS  PubMed  Google Scholar 

  25. Durnett, Richardson J, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 304:88–98

    Google Scholar 

  26. Fukuda M, Kowalchyk JA, Zhang X, Martin TF, Mikoshiba K (2002) Vesicle-associated membrane protein-2/synaptobrevin binding to synaptotagmin I promotes O-glycosylation of synaptotagmin I. J Biol Chem 277:30351–30358

    Article  CAS  PubMed  Google Scholar 

  27. Ganju P, Davis A, Patel S, Nuñez X, Fox A (2001) p38 stress-activated protein kinase inhibitor reverses bradykinin B1 receptor-mediated component of inflammatory hyperalgesia. Eur J Pharmacol 421:191–199

    Article  CAS  PubMed  Google Scholar 

  28. García-Martínez C, Humet M, Planells-Cases R, Gomis A, Caprini M, Viana F, De La Pena E, Sanchez-Baeza F, Carbonell T, De Felipe C, Perez-Paya E, Belmonte C, Messeguer A, Ferrer-Montiel A (2002) Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci USA 99:2374–2379

    Article  PubMed  Google Scholar 

  29. Garcia-Sanz N, Ferández-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sanche E, Fernández-Ballester G, Ferrer-Montiel A (2004) Identification of tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24:5306–5314

    Article  Google Scholar 

  30. Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141:1313–1320

    Article  CAS  PubMed  Google Scholar 

  31. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845

    Article  CAS  PubMed  Google Scholar 

  32. Haberman Y, Grimberg E, Fukuda M, Sagi-Eisenberg R (2003) Synaptotagmin IX, a possible linker between the perinuclear endocytic recycling compartment and the microtubules. J Cell Sci 116:4307–4318

    Article  CAS  PubMed  Google Scholar 

  33. Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    Article  CAS  PubMed  Google Scholar 

  34. Holzer P, Holzer-Petsche U (1997) Tachykinins and in the gut. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263

    Article  CAS  PubMed  Google Scholar 

  35. Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    CAS  PubMed  Google Scholar 

  36. Holzer P (2004) TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 500:231–241

    Article  CAS  PubMed  Google Scholar 

  37. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CI, Miller JD, Davies SN, Geppetti P, Walker JM Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    Article  CAS  PubMed  Google Scholar 

  38. Hunter DD, Myers AC, Undem BJ (2000) Nerve-growth factor induced phenotypic switch in guinea pig airway sensory neurons. Am J Respir 161:1985–1990

    CAS  Google Scholar 

  39. Hwang SW, Cho J, Kwak J, Lee SY, Kang J, Jung S, Cho KH, Min YG, Suh D, Kim U, Oh U (2000) Direct activation of capsaicin receptors by products of lipooxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6056

    Article  CAS  PubMed  Google Scholar 

  40. Ilardi JM, Mochida S, Sheng ZH (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2:119–124

    Article  CAS  PubMed  Google Scholar 

  41. Inoue K, Koizumi S, Fuziwara S, Denda S, Inoue K, Denda M (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124–129

    Article  CAS  PubMed  Google Scholar 

  42. Ji R-R, Samad TA, Jin S-X, Schmoll R, Woolf C (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    Article  CAS  PubMed  Google Scholar 

  43. Jin X, Morsy N, Winston J, Pasricha PJ, Garret K, Akbarali HI (2004) Modulation of TRPV1 by non-receptor tyrosine kinase, c-Src kinase. Am J Physiol 287:C558–C563

    Article  CAS  Google Scholar 

  44. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  PubMed  Google Scholar 

  45. Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279:7048–7054

    Article  CAS  PubMed  Google Scholar 

  46. Karlsson JA (1993) A role for capsaicin sensitive, tachykinin-containing nerves in chronic coughing and sneezing but not in asthma: a hypothesis. Thorax 48:396–400

    CAS  PubMed  Google Scholar 

  47. Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennett MV, Zukin RS (2001) Protein kinase C modulates. NMDA receptor trafficking and gating. Nature Neurosci 4:382–390

    Article  CAS  PubMed  Google Scholar 

  48. Lundberg JM, Franco-Cereceda A, Hua X, Hokfelt T, Fischer JA (1985) Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol 108:315–319

    Article  CAS  PubMed  Google Scholar 

  49. Malmberg AB, Brandom EP, Idzerda RL, Liu H, McKnight GS, Basbaum AI (1997) Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J Neuroscience 17:7462–7470

    CAS  Google Scholar 

  50. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432

    Article  CAS  PubMed  Google Scholar 

  51. Morenilla-Palao C, Planells-Cases R, García-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672

    Article  CAS  PubMed  Google Scholar 

  52. Morenilla-Palao C, Planells-Cases R, García-Sanz N, Fernández-Carvajal A, Ferrer-Montiel A (2001) A member of the HIT family interacts with TRPV1. Soc Neurosci Abs 27, P 56.2

  53. Nagy I, Sántha P, Jancsó G, Urbán L (2004) The role of vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500:351–369

    Article  CAS  PubMed  Google Scholar 

  54. Nakata T, Terada S, Hirokawa N (1998) Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J Cell Biol 140:659–674

    Article  CAS  PubMed  Google Scholar 

  55. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277:13375–13378

    Article  CAS  PubMed  Google Scholar 

  56. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006

    Article  CAS  PubMed  Google Scholar 

  57. Obreja O, Rathee KP, Lips KS, Distler C, Kress M (2002) IL-1β potentiates heat-activated currents in rat sensory neurons: involvement of IL-1R1, tyrosine kinase and protein kinase C. FASEB J 16:1497–1503

    Article  CAS  PubMed  Google Scholar 

  58. Olah Z, Karai L, Iadarola MJ (2002) Protein kinase C(alpha) is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways. J Biol Chem 277:35752–35759

    Article  CAS  PubMed  Google Scholar 

  59. Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    Article  CAS  PubMed  Google Scholar 

  60. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  CAS  PubMed  Google Scholar 

  61. Rathee KP, Distler C, Obreja O, Neuhuber W, Wand GK, Wang SY, Nau C, Kress M (2002) PKA/AKAP/VR-1 module: a common ling of Gs-mediated signalling to thermal hyperalgesia. J Neurosci 22:4740–4745

    CAS  PubMed  Google Scholar 

  62. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302:839–845

    Article  CAS  PubMed  Google Scholar 

  63. Scholz J, Woolf CJ (2002) Can we conquer pain? Nat Neurosci 5:1062–1067

    Article  CAS  PubMed  Google Scholar 

  64. Stander S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitc V, Brzoska T, Lippert U, Henz BM, Luger TA, Metze D, Steinhoff M (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139

    Article  PubMed  Google Scholar 

  65. Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629–7632

    Article  PubMed  Google Scholar 

  66. Sugiura T, Tominaga M, Katsuya H, Mizumura K (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88:544–548

    CAS  PubMed  Google Scholar 

  67. Szallasi A, Di Marzo V (2000) New perspectives on enigmatic vanilloid receptors. Trends Neurosci 23:491–497

    Article  CAS  PubMed  Google Scholar 

  68. Szolcsanyi J (1996) Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism. Prog Brain Res 113:343–359

    CAS  PubMed  Google Scholar 

  69. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  70. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956

    Article  CAS  PubMed  Google Scholar 

  71. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825

    Article  CAS  PubMed  Google Scholar 

  72. Vellani V, Zachrisson O, McNaughton PA (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol 560:391–401

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Kedei N, Wang M, Wang QJ, Huppler AR, Toth A, Tran R, Blumberg PM (2004) Interaction between protein kinase Cmu and the vanilloid receptor type 1. J Biol Chem 279:53674–53682

    Article  CAS  PubMed  Google Scholar 

  74. Widman C, Gibson S, Jarpe MB, Jonhson GL (1999) Mitogen-activated protein kinase: a conservation of a three module from yeast to humans. Physiolol Rev 79:143–180

    Google Scholar 

  75. Williams M, Kowaluk EA, Arneric SP (1999) Emerging molecular approaches to pain therapy. J Med Chem 42:1481–1500

    Article  CAS  PubMed  Google Scholar 

  76. Wood JN, Docherthy R (1997) Chemical activators of sensory neurons. Rev Physiol 59:457–482

    Article  CAS  Google Scholar 

  77. Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410–6415

    Article  CAS  PubMed  Google Scholar 

  78. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J (1994) Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62:327–331

    Article  CAS  PubMed  Google Scholar 

  79. Yang Y, Udayasankar S, Dunning J, Chen P, Gillis KD (2002) A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. Proc Natl Acad Sci USA 99:17060–17065

    Article  CAS  PubMed  Google Scholar 

  80. Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP25 but not a diffusible messenger. Cell 98:475–485

    Article  CAS  PubMed  Google Scholar 

  81. Zhu H, Hille B, Xu T (2002) Sensitization of regulated exocytosis by protein kinase C. Proc Natl Acad Sci USA 99:17055–17059

    Article  CAS  PubMed  Google Scholar 

  82. Zhuang Z-Y, Xu H, Clapham DE, Ji R-R (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 24:8300–8309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of our group and colleagues of collaboration groups for their fundamental contribution to the results herein presented. We are indebted to the financial support from the MCYT, FIS, GVA and Fundació La Caixa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ferrer-Montiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planells-Cases, R., Garcìa-Sanz, N., Morenilla-Palao, C. et al. Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch - Eur J Physiol 451, 151–159 (2005). https://doi.org/10.1007/s00424-005-1423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1423-5

Keywords

Navigation