Skip to main content
Log in

Adaptive response of equine intestinal Na+/glucose co-transporter (SGLT1) to an increase in dietary soluble carbohydrate

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Experimental and epidemiological evidence suggests that consumption of hydrolyzable carbohydrate, hCHO (grain), by horses is an important risk factor for colic, a common cause of equine mortality. It is unknown whether the small intestinal capacity to digest hCHO and/or to absorb monosaccharides is limiting, or even if horses can adapt to increased carbohydrate load. We investigated changes in the brush-border membrane carbohydrate digestive enzymes and glucose absorptive capacity of horse small intestine in response to increased hCHO. Expression of the Na+/glucose co-transporter, SGLT1, was assessed by Western blotting, immunohistochemistry, Northern blotting, QPCR, and Na+-dependent d-glucose transport. Glucose transport rates, SGLT1 protein, and mRNA expression were all 2-fold higher in the jejunum and 3- to 5-fold higher in the ileum of horses maintained on a hCHO-enriched diet compared to pasture forage. Activity of the disaccharidases was unaltered by diet. In a well-controlled study, we determined SGLT1 expression in the duodenal and ileal biopsies of horses switched, gradually over a 2-month period, from low (<1.0 g/kg bwt/day) to high hCHO (6.0 g/kg bwt/day) diets of known composition. We show that SGLT1 expression is enhanced, with time, 2-fold in the duodenum and 3.3-fold in the ileum. The study has important implications for dietary management of the horse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Affleck JA, Heliwell PA, Kellett GL (2003) Immunohistochemical detection of GLUT2 at the rat intestinal brush-border membrane. J Histochem Cytochem 51:1567–1574

    PubMed  CAS  Google Scholar 

  2. Argenzio RA, Hintz HF (1972) Effect of diet on glucose entry and oxidation rates in ponies. J Nutr 102:897–892

    Google Scholar 

  3. Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    PubMed  CAS  Google Scholar 

  4. Bracamonte JL, Boure LP, Geor RJ, Runciman JR, Nykamp SG, Cruz AM, Teeter MG, Waterfall HL (2008) Evaluation of a laparoscopic technique for collection of serial full-thickness small intestinal biopsy specimens in standing sedated horses. Am J Vet Res 69:431–439

    Article  PubMed  Google Scholar 

  5. Brannon RM (1990) Adaptation of exocrine pancreas to diet. Ann Rev Nutr 10:85–105

    Article  CAS  Google Scholar 

  6. Buddington RK, Chen JW, Diamond JM (1991) Dietary regulation of intestinal brush-border sugar and amino acid transport in carnivores. Am J Physiol 261:R794–R801

    Google Scholar 

  7. Buddington RK, Rashmir-Raven AM (2002) Carbohydrate digestion by the horse: is there a limiting factor. Equine Vet J 34:326–327

    Article  PubMed  CAS  Google Scholar 

  8. Clarke LL, Roberts MC, Argenzio RA (1990) Feeding and digestive problems in horses. physiologic responses to a concentrated meal. Vet Clin North Am Equine Pract 6:433–450

    PubMed  CAS  Google Scholar 

  9. Cui X-L, Schlesier EL, Cerqueira C, Ferraris RP (2005) Fructose induced increases in neonatal rat intestinal fructose transporter involve the PI3-kinase/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol 288:G1310–G1320

    Article  PubMed  CAS  Google Scholar 

  10. Daly K, Stewart C, Flint HJ, Shirazi-Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Micrbiol Ecol 38:141–151

    Article  CAS  Google Scholar 

  11. Dyer J, Fernandez-Castaño Merediz E, Salmon KSH, Proudman CJ, Edwards GB, Shirazi-Beechey SP (2002) Molecular characterisation of carbohydrate digestion and absorption in the equine small intestine. Equine Vet J 34:349–358

    Article  PubMed  CAS  Google Scholar 

  12. Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP (2002) Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol 282:G241–G248

    PubMed  CAS  Google Scholar 

  13. Dyer J, Daly K, Salmon KS, Arora DK, Kokrashvili Z, Margolskee RF, Shirazi-Beechey SP (2007) Intestinal glucose sensing and regulation of intestinal glucose absorption. Biochem Soc Trans 35:1191–1194

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez-Castaño Merediz E, Dyer J, Salmon KSH, Shirazi-Beechey SP (2004) Molecular characterisation of fructose transport in equine small intestine. Equine Vet J 36:532–538

    Article  PubMed  Google Scholar 

  15. Ferraris RP, Diamond JM (1989) Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol 51:125–141

    Article  PubMed  CAS  Google Scholar 

  16. Goodson J, Tyznik WJ, Cline JH, Dehority BA (1988) Effects of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the caecum of the pony. Appl Env Microbiol 54:1946–1950

    CAS  Google Scholar 

  17. Hillyer MH, Mair TS (1997) Recurrent colic in the mature horse: a retrospective review of 58 cases. Equine Vet J 29:421–424

    PubMed  CAS  Google Scholar 

  18. Hintz HF, Cymbaluk NF (1994) Nutrition of the horse. Ann Rev Nutr 14:243–267

    Article  CAS  Google Scholar 

  19. Hoffman RM, Wilson JA, Kronfeld DS, Cooper WL, Lawrence LA, Sklan D, Harris PA (2001) Hydrolyzable carbohydrates in pasture, hay, and horse feeds: direct assay and seasonal variation. J Anim Sci 79:500–506

    PubMed  CAS  Google Scholar 

  20. Hudson JM, Cohen ND, Gibbs PG, Thompson JA (2001) Feeding practices associated with colic in horses. J Am Vet Med Assoc 219:1419–1425

    Article  PubMed  CAS  Google Scholar 

  21. Kellett GL, Helliwell PA (2000) The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush border membrane. Biochem J 350:155–162

    Article  PubMed  CAS  Google Scholar 

  22. Kienzle E, Radicke S (1993) Effect of diet on maltase, sucrose and lactase in the small intestinal mucosa of horse. J Anim Physiol Anim Nutr 70:97–103

    Google Scholar 

  23. Kienzle E, Radicke S, Landes E, Kleffken D, Illenseer M, Meyer H (1994) Activity of amylase in gastrointestinal tract of horse. J Anim Physiol Anim Nutr 72:234–241

    Article  Google Scholar 

  24. Lescale-Matys L, Dyer J, Scott D, Freeman TC, Wright EM, Shirazi-Beechey SP (1993) Regulation of the ovine intestinal Na+-glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J 291:435–440

    PubMed  CAS  Google Scholar 

  25. Lopes MAF, White NA II, Crisman MV, Ward DL (2004) Effects of feeding large amounts of grain on colonic contents and faeces in horses. Am J Vet Res 65:687–694

    Article  PubMed  Google Scholar 

  26. Mace OJ, Affleck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392

    Article  PubMed  CAS  Google Scholar 

  27. Mair TS, Hillyer MH (1997) Chronic colic in the mature horse: a retrospective review of 106 cases. Equine Vet J 29:415–420

    PubMed  CAS  Google Scholar 

  28. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na-glucose cotransporter 1. Proc Natl Acad Sci U S A 104:15075–15080

    Article  PubMed  CAS  Google Scholar 

  29. Oatey PB, Van Weering DHJ, Dobson SP, Gould GW, Tavaré JM (1997) GLUT 4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Biochem J 327:637–642

    PubMed  CAS  Google Scholar 

  30. Potter GD, Arnold FF, Householder DD, Hansen DH, Brown KM (1992) Digestion of starch in the small and large intestine of the equine. Pferdeheilkunde 1:107–111

    Google Scholar 

  31. Pratt SE, Geor RJ, McCutcheon LJ (2006) effects of dietary energy source and physical conditioning on insulin sensitivity and glucose tolerance in standardbred horses. Equine Vet J Suppl 36:579–584

    PubMed  Google Scholar 

  32. Richards N, Choct M, Hinch GN, Rowe JB (2004) Examination of the use of exogenous α-amylase and amyloglucoside to enhance starch digestion in the small intestine of horse. Anim Feed Sci Technol 114:295–305

    Article  CAS  Google Scholar 

  33. Roberts MC (1974) Amylase activity in the small intestine of the horse. Res Vet Sci UK 17:400–401

    CAS  Google Scholar 

  34. Roberts MC, Hill FWG, Kidder DE (1974) The development and distribution of small intestinal disaccharidases in the horse. Res Vet Sci 17:42–48

    PubMed  CAS  Google Scholar 

  35. Roberts MC (1975) Carbohydrate digestion and absorption in the equine small intestine. J S Afr Vet Ass 46:19–27

    CAS  Google Scholar 

  36. Salmon KSH, Dyer J, Fernandez-Castaño Merediz E, Shirazi-Beechey SP (2002) Absorption of monosaccharides in equine small intestine; adaptive response to dietary change. Gastroenterol 122:T1316

    Google Scholar 

  37. Shirazi-Beechey SP, Davies AG, Tebbutt K, Dyer J, Ellis A, Taylor P, Fairclough P, Beechey RB (1990) Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterol 98:676–685

    CAS  Google Scholar 

  38. Shirazi-Beechey SP (1995) Molecular biology of intestinal glucose transport. Nutr Res Rev 8:27–41

    Article  PubMed  CAS  Google Scholar 

  39. Shirazi-Beechey SP (1996) Intestinal sodium-dependent D-glucose co-transporter: dietary regulation. Proc Nutr Soc 55:167–178

    Article  PubMed  CAS  Google Scholar 

  40. Solberg DH, Diamond JM (1987) Comparison of different dietary sugars as inducers of intestinal sugar transporters. Am J Physiol 252:G574–G584

    PubMed  CAS  Google Scholar 

  41. Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE (1998) Regulation of insulin stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem 273:33876–33883

    Article  PubMed  CAS  Google Scholar 

  42. Tinker MK, White NA, Lessard P, Thatcher CD, Pelzer KD, Davis B, Carmel DK (1997) Prospective study of equine colic risk factors. Equine Vet J 29:454–458

    Article  PubMed  CAS  Google Scholar 

  43. Trimble ER, Rausch U, Kern HF (1987) Changes in individual rates of pancreatic enzyme and isoenzyme biosynthesis in the obese Zucker rat. Biochem J 248:771–777

    PubMed  CAS  Google Scholar 

  44. Wood IS (1995) Molecular characterisation of intestinal nutrient transporters. PhD thesis, University of Wales, Aberystwyth

  45. Wood IS, Dyer J, Hofmann RR, Shirazi-Beechey SP (2000) Expression of Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants. Pflugers Archiv 441:155–162

    Article  PubMed  CAS  Google Scholar 

  46. Wright EM, Martin MG, Turk E (2003) Intestinal absorption in health and disease—sugars. Best Practice & Res Clin Gastroenterol 117:943–956

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of The Horse Trust, Horserace Betting Levy Board, Natural Sciences and Engineering Research Council of Canada, and Equine Guelph is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya P. Shirazi-Beechey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Immunodetection of GLUT2 in the small intestine of horses maintained on concentrate diets. Immunofluorescent detection of GLUT2 in sections of horse jejunum, using either the antibody targeted to the C-terminus region of GLUT2 (a) or to the extracellular loop between transmembrane regions 1 and 2 of equine GLUT2 (b) (magnification ×10). Omission of both primary antibodies for GLUT2 showed no non-specific immunoreactivity in equine small intestine (c and d, ×40 magnification; controls for Fig. 4a, b). Scale bar = 20 μm (DOC 24.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, J., Al-Rammahi, M., Waterfall, L. et al. Adaptive response of equine intestinal Na+/glucose co-transporter (SGLT1) to an increase in dietary soluble carbohydrate. Pflugers Arch - Eur J Physiol 458, 419–430 (2009). https://doi.org/10.1007/s00424-008-0620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0620-4

Keywords

Navigation