Skip to main content

Advertisement

Log in

Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study examines mechanisms by which changes in tissue oxygen tension elicit vasomotor responses and whether localized changes in oxygen tension initiates conducted vasomotor responses in mouse cremaster arterioles. Intravital microscopy was used to visualize the mouse cremaster microcirculation. The cremaster was superfused with Krebs’ solution with different oxygen tensions, and a gas exchange chamber was used to induce localized changes in oxygen tension. In arterioles where red blood cells were removed by buffer perfusion, arterioles responded with same magnitudes of vasodilatation (ΔD = 16.0 ± 4.9 μm) when changing from high (PO2 = 242.5 ± 13.3 mm Hg) to low (PO2 = 22.5 ± 4.8 mm Hg) oxygen tension as seen in the intact cremaster circulation (ΔD = 18.7 ± 1.0 μm). Blockade of NO synthases by L-NAME and adenosine receptors by DPCPX had no effects on vasomotor responses to low or high oxygen. Induction of localized low (PO2 = 23.3 ± 5.7 mmHg) or high (PO2 = 300.0 ± 25.7 mm Hg) oxygen tension caused vasodilatation or -constriction locally and at a site 1,000 μm upstream (distantly). Glibenclamide blocker of ATP-sensitive K+ channels inhibited vasodilatation and -constriction to low (PO2 = 16.0 ± 6.4 mm Hg) and high (PO2 = 337.4 ± 12.8 mm Hg) oxygen tension. 1) ATP-sensitive K+ channels seem to mediate, at least in part, vasodilatation and vasoconstriction to low and high oxygen tension; 2) Red blood cells are not necessary for inducing vasodilatation and vasoconstriction to low or high oxygen tension; 3) localized changes in the oxygen tension cause vasomotor responses, which are conducted upstream along arterioles in mouse cremaster microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  Google Scholar 

  2. Arciero JC, Carlson BE, Secomb TW (2008) Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol 295:H1562–H1571

    Article  CAS  PubMed  Google Scholar 

  3. Bakker EN, Kerkhof CJ, Sipkema P (1999) Signal transduction in spontaneous myogenic tone in isolated arterioles from rat skeletal muscle. Cardiovasc Res 41:229–236

    Article  CAS  PubMed  Google Scholar 

  4. Baudry N, Danialou G, Boczkowski J, Vicaut E (1998) In vivo study of the effect of systemic hypoxia on leukocyte-endothelium interactions. Am J Respir Crit Care Med 158:477–483

    CAS  PubMed  Google Scholar 

  5. Bryan PT, Marshall JM (1999) Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors. J Physiol 514(Pt 1):151–162

    Article  CAS  PubMed  Google Scholar 

  6. Bryan PT, Marshall JM (1999) Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia. J Physiol 514(Pt 1):163–175

    Article  CAS  PubMed  Google Scholar 

  7. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO III, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505

    Article  CAS  PubMed  Google Scholar 

  8. Dart C, Standen NB (1995) Activation of ATP-dependent K + channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol 483(Pt 1):29–39

    CAS  PubMed  Google Scholar 

  9. Daut J, Maier-Rudolph W, von BN, Mehrke G, Gunther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG Jr (2000) Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol 278:H1294–H1298

    CAS  PubMed  Google Scholar 

  11. Duling BR, Berne RM (1970) Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27:669–678

    CAS  PubMed  Google Scholar 

  12. Edmunds NJ, Marshall JM (2003) The roles of nitric oxide in dilating proximal and terminal arterioles of skeletal muscle during systemic hypoxia. J Vasc Res 40:68–76

    Article  CAS  PubMed  Google Scholar 

  13. Ellis CG, Milkovich S, Goldman D (2006) Experimental protocol investigating local regulation of oxygen supply in rat skeletal muscle in vivo. J Vasc Res 43:45

    Google Scholar 

  14. Ellsworth ML (2004) Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc 36:35–41

    Article  CAS  PubMed  Google Scholar 

  15. Engbersen R, Masereeuw R, van Gestel MA, van der Logt EM, Smits P, Russel FG (2005) Glibenclamide depletes ATP in renal proximal tubular cells by interfering with mitochondrial metabolism. Br J Pharmacol 145:1069–1075

    Article  CAS  PubMed  Google Scholar 

  16. Figueroa XF, Paul DL, Simon AM, Goodenough DA, Day KH, Damon DN, Duling BR (2003) Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 92:793–800

    Article  CAS  PubMed  Google Scholar 

  17. Frisbee JC (2002) Regulation of in situ skeletal muscle arteriolar tone: interactions between two parameters. Microcirculation 9:443–462

    CAS  PubMed  Google Scholar 

  18. Frisbee JC, Lombard JH (1999) Elevated oxygen tension inhibits flow-induced dilation of skeletal muscle arterioles. Microvasc Res 58:99–107

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Alonso J, Olsen DB, Saltin B (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res 91:1046–1055

    Article  CAS  PubMed  Google Scholar 

  20. Gros R, Van WR, You X, Thorin E, Husain M (2002) Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice. Am J Physiol Heart Circ Physiol 282:H380–H388

    CAS  PubMed  Google Scholar 

  21. Gustafsson F, Holstein-Rathlou N (1999) Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance. Acta Physiol Scand 167:11–21

    Article  CAS  PubMed  Google Scholar 

  22. Hansen J, Thomas GD, Jacobsen TN, Victor RG (1994) Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am J Physiol 266:H2508–H2514

    CAS  PubMed  Google Scholar 

  23. Hungerford JE, Sessa WC, Segal SS (2000) Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J 14:197–207

    CAS  PubMed  Google Scholar 

  24. Jackson WF (2000) Hypoxia does not activate ATP-sensitive K + channels in arteriolar muscle cells. Microcirculation 7:137–145

    CAS  PubMed  Google Scholar 

  25. Jackson WF, Duling BR (1983) The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ Res 53:515–525

    CAS  PubMed  Google Scholar 

  26. Jagger JE, Bateman RM, Ellsworth ML, Ellis CG (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280:H2833–H2839

    CAS  PubMed  Google Scholar 

  27. Johnson PC, Vandegriff K, Tsai AG, Intaglietta M (2005) Effect of acute hypoxia on microcirculatory and tissue oxygen levels in rat cremaster muscle. J Appl Physiol 98:1177–1184

    Article  PubMed  Google Scholar 

  28. Kleppisch T, Nelson MT (1995) Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 92:12441–12445

    Article  CAS  PubMed  Google Scholar 

  29. Klitzman B, Popel AS, Duling BR (1983) Oxygen transport in resting and contracting hamster cremaster muscles: experimental and theoretical microvascular studies. Microvasc Res 25:108–131

    Article  CAS  PubMed  Google Scholar 

  30. Koller A, Kaley G (1991) Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am J Physiol 260:H862–H868

    CAS  PubMed  Google Scholar 

  31. Koller A, Kaley G (1998) Shear stress-induced dilation of arterioles. Am J Physiol 274:H382–H383

    CAS  PubMed  Google Scholar 

  32. Liu Q, Flavahan NA (1997) Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP-channels. Br J Pharmacol 120:728–734

    Article  CAS  PubMed  Google Scholar 

  33. Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX)—a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 336:204–210

    Article  CAS  PubMed  Google Scholar 

  34. Looft-Wilson RC, Payne GW, Segal SS (2004) Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol 97:1152–1158

    Article  CAS  PubMed  Google Scholar 

  35. Lynch FM, Austin C, Heagerty AM, Izzard AS (2006) Adenosine- and hypoxia-induced dilation of human coronary resistance arteries: evidence against the involvement of K(ATP) channels. Br J Pharmacol 147:455–458

    Article  CAS  PubMed  Google Scholar 

  36. Pohl U, de WC, Gloe T (2000) Large arterioles in the control of blood flow: role of endothelium-dependent dilation. Acta Physiol Scand 168:505–510

    Article  CAS  PubMed  Google Scholar 

  37. Popel AS (1981) Mathematical-modeling of oxygen-transport near a tissue surface—effect of the surface Po2. Math Biosci 55:231–246

    Article  Google Scholar 

  38. Poucher SM (1996) The role of the A(2A) adenosine receptor subtype in functional hyperaemia in the hindlimb of anaesthetized cats. J Physiol 492(Pt 2):495–503

    CAS  PubMed  Google Scholar 

  39. Proctor KG, Duling BR (1982) Adenosine and free-flow functional hyperemia in striated muscle. Am J Physiol 242:H688–H697

    CAS  PubMed  Google Scholar 

  40. Ray CJ, Abbas MR, Coney AM, Marshall JM (2002) Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies. J Physiol 544:195–209

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigo GC, Standen NB (2005) ATP-sensitive potassium channels. Curr Pharm Des 11:1915–1940

    Article  CAS  PubMed  Google Scholar 

  42. Savard G, Strange S, Kiens B, Richter EA, Christensen NJ, Saltin B (1987) Noradrenaline spillover during exercise in active versus resting skeletal muscle in man. Acta Physiol Scand 131:507–515

    Article  CAS  PubMed  Google Scholar 

  43. Schrage WG, Wilkins BW, Dean VL, Scott JP, Henry NK, Wylam ME, Joyner MJ (2005) Exercise hyperemia and vasoconstrictor responses in humans with cystic fibrosis. J Appl Physiol 99:1866–1871

    Article  PubMed  Google Scholar 

  44. Segal SS (1994) Cell-to-cell communication coordinates blood flow control. Hypertension 23:1113–1120

    CAS  PubMed  Google Scholar 

  45. Segal SS (2005) Regulation of blood flow in the microcirculation. Microcirculation 12:33–45

    Article  PubMed  Google Scholar 

  46. Segal SS, Jacobs TL (2001) Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle. J Physiol 536:937–946

    Article  CAS  PubMed  Google Scholar 

  47. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K + channels. Prog Biophys Mol Biol 81:133–176

    Article  CAS  PubMed  Google Scholar 

  48. Sirvio LM, Grussing DM (1989) The effect of gas permeability of film dressings on wound environment and healing. J Invest Dermatol 93:528–531

    Article  CAS  PubMed  Google Scholar 

  49. Vicaut E, Hou X (1993) Arteriolar constriction and local renin–angiotensin system in rat microcirculation. Hypertension 21:491–497

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Danish Medical Research Council for Health and Disease, the Novo-Nordisk Foundation, the Lundbeck Foundation, and the Danish Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Thuc Ngo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngo, A.T., Jensen, L.J., Riemann, M. et al. Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ. Pflugers Arch - Eur J Physiol 460, 41–53 (2010). https://doi.org/10.1007/s00424-010-0837-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0837-x

Keywords

Navigation