Skip to main content

Advertisement

Log in

Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury

  • Cardiovascular physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Unapposed connexin 43 hemichannels (Cx43Hc) are present on sarcolemma of cardiomyocytes. Whereas Cx43Hc remain closed during physiological conditions, their opening under ischemic stress contributes to irreversible tissue injury and cell death. To date, conventional blockers of connexin channels act unselectively on both gap junction channels and unapposed hemichannels. Here, we test the hypothesis that Gap26, a synthetic structural mimetic peptide deriving from the first extracellular loop of Cx43 and a presumed selective blocker of Cx43Hc, confers resistance to intact rat heart against ischemia injury. Langendorff-perfused intact rat hearts were utilized. Regional ischemia was induced by 40-min occlusion of the left anterior descendent coronary and followed by 180 min of reperfusion. Gap26 was applied either 10 min before or 30 min after the initiation of ischemia. Interestingly, myocardial infarct size was reduced by 48% and 55% in hearts treated with Gap26 before or during ischemia, respectively, compared to untreated hearts. Additionally, myocardial perfusate flow was increased in both groups during reperfusion by 37% and 32%, respectively. Application of Gap26 increased survival of isolated cardiomyocytes after simulated ischemia–reperfusion by nearly twofold compared to untreated cells. On the other hand, superfusion of tsA201 cells transiently expressing Cx43 with Gap26 caused 61% inhibition of Cx43Hc-mediated currents recorded using the patch clamp technique. In summary, we demonstrate for the first time that Cx43 mimetic peptide Gap26 confers protection to intact heart against ischemia–reperfusion injury whether administered before or after the occurrence of ischemia. In addition, we provide unequivocal evidence for the inhibitory effect of Gap26 on genuine Cx43Hc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armstrong S, Downey JM, Ganote CE (1994) Preconditioning of isolated rabbit cardiomyocytes: induction by metabolic stress and blockade by the adenosine antagonist SPT and calphostin C, a protein kinase C inhibitor. Cardiovasc Res 28:72–77

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong SC, Kao R, Gao W, Shivell LC, Downey JM, Honkanen RE, Ganote CE (1997) Comparison of in vitro preconditioning responses of isolated pig and rabbit cardiomyocytes: effects of a protein phosphatase inhibitor, fostriecin. J Mol Cell Cardiol 29:3009–3024

    Article  CAS  PubMed  Google Scholar 

  3. Bendukidze Z, Isenberg G, Klockner U (1985) Ca-tolerant guinea-pig ventricular myocytes as isolated by pronase in the presence of 250 microM free calcium. Basic Res Cardiol 80(Suppl 1):13–17

    CAS  PubMed  Google Scholar 

  4. Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    Article  CAS  PubMed  Google Scholar 

  5. Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin PE, Evans WH, Leybaert L (2003) Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1, 4, 5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 197:205–213

    Article  CAS  PubMed  Google Scholar 

  6. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1, 4, 5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    Article  CAS  PubMed  Google Scholar 

  7. Chaytor AT, Evans WH, Griffith TM (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 503(Pt 1):99–110

    Article  CAS  PubMed  Google Scholar 

  8. Chaytor AT, Evans WH, Griffith TM (1998) Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. J Physiol 508(Pt 2):561–573

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GW, Mochly-Rosen D (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci U S A 98:11114–11119

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Wright LR, Chen CH, Oliver SF, Wender PA, Mochly-Rosen D (2001) Molecular transporters for peptides: delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system, R(7). Chem Biol 8:1123–1129

    Article  CAS  PubMed  Google Scholar 

  11. Clarke TC, Williams OJ, Martin PE, Evans WH (2009) ATP release by cardiac myocytes in a simulated ischaemia model: inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur J Pharmacol 605:9–14

    Article  CAS  PubMed  Google Scholar 

  12. Cohen MV, Liu GS, Downey JM (1991) Preconditioning causes improved wall motion as well as smaller infarcts after transientcoronary occlusion in rabbits. Circulation 84:341–349

    Google Scholar 

  13. Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A 100:11388–11393

    Article  CAS  PubMed  Google Scholar 

  14. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 99:495–500

    Article  CAS  PubMed  Google Scholar 

  15. Dahl G (2007) Gap junction-mimetic peptides do work, but in unexpected ways. Cell Commun Adhes 14:259–264

    Article  CAS  PubMed  Google Scholar 

  16. Dahl G (1996) Where are the gates in gap junction channels? Clin Exp Pharmacol Physiol 23:1047–1052

    Article  CAS  PubMed  Google Scholar 

  17. Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29:606–612

    Article  PubMed  Google Scholar 

  18. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    Article  CAS  PubMed  Google Scholar 

  19. Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B (2005) ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46:1208–1218

    Article  PubMed  Google Scholar 

  20. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  CAS  PubMed  Google Scholar 

  21. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    Article  CAS  PubMed  Google Scholar 

  22. Gray MO, Karliner JS, Mochly-Rosen D (1997) A selective epsilon-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J Biol Chem 272:30945–30951

    Article  CAS  PubMed  Google Scholar 

  23. Hatanaka K, Kawata H, Toyofuku T, Yoshida K (2004) Down-regulation of connexin43 in early myocardial ischemia and protective effect by ischemic preconditioning in rat hearts in vivo. Jpn Heart J 45:1007–1019

    Article  CAS  PubMed  Google Scholar 

  24. Hawat G, Baroudi G (2008) Differential modulation of unapposed connexin 43 hemichannel electrical conductance by protein kinase C isoforms. Pflugers Arch 456:519–527

    Article  CAS  PubMed  Google Scholar 

  25. Hund TJ, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE (2007) Protein kinase C epsilon mediates salutary effects on electrical coupling induced by ischemic preconditioning. Heart Rhythm 4:1183–1193

    Article  PubMed  Google Scholar 

  26. Inagaki K, Hahn HS, Dorn GW, Mochly-Rosen D (2003) Additive protection of the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation 108:869–875

    Article  CAS  PubMed  Google Scholar 

  27. Jennings RB, Reimer KA, Steenbergen C (1986) Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion. J Mol Cell Cardiol 18:769–780

    Article  CAS  PubMed  Google Scholar 

  28. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  CAS  PubMed  Google Scholar 

  29. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872

    Article  CAS  PubMed  Google Scholar 

  30. Kwak BR, Jongsma HJ (1999) Selective inhibition of gap junction channel activity by synthetic peptides. J Physiol 516(Pt 3):679–685

    Article  CAS  PubMed  Google Scholar 

  31. Leybaert L, Braet K, Vandamme W, Cabooter L, Martin PE, Evans WH (2003) Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes 10:251–257

    CAS  PubMed  Google Scholar 

  32. Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33:2145–2155

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Heinzel FR, Boengler K, Schulz R, Heusch G (2004) Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol 36:161–163

    Article  CAS  PubMed  Google Scholar 

  34. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM (1999) Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 31:1937–1948

    Article  CAS  PubMed  Google Scholar 

  35. Margolskee RF, Hendry-Rinde B, Horn R (1993) Panning transfected cells for electrophysiological studies. Biotechniques 15:906–911

    CAS  PubMed  Google Scholar 

  36. Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–H221

    Article  CAS  PubMed  Google Scholar 

  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  38. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Google Scholar 

  39. Padilla F, Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Soler-Soler J (2003) Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia–reperfusion. Am J Physiol Heart Circ Physiol 285:H1909–H1916

    CAS  PubMed  Google Scholar 

  40. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    Article  CAS  PubMed  Google Scholar 

  41. Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R (1997) Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81:404–414

    CAS  PubMed  Google Scholar 

  42. Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074

    Article  CAS  PubMed  Google Scholar 

  43. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26:657–667

    Article  CAS  PubMed  Google Scholar 

  44. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    Article  CAS  PubMed  Google Scholar 

  45. Saurin AT, Pennington DJ, Raat NJ, Latchman DS, Owen MJ, Marber MS (2002) Targeted disruption of the protein kinase C epsilon gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovasc Res 55:672–680

    Article  CAS  PubMed  Google Scholar 

  46. Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457:1207–1226

    Article  CAS  PubMed  Google Scholar 

  47. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    CAS  PubMed  Google Scholar 

  48. Shiki K, Hearse DJ (1987) Preconditioning of ischemic myocardium: reperfusioninduced arrhythmias. Am J Physiol 253:H1470–H1476

    Google Scholar 

  49. Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720

    Article  CAS  PubMed  Google Scholar 

  50. Steenbergen C, Hill ML, Jennings RB (1985) Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ Res 57:864–875

    CAS  PubMed  Google Scholar 

  51. Tranum-Jensen J, Janse MJ, Fiolet WT, Krieger WJ, D'Alnoncourt CN, Durrer D (1981) Tissue osmolality, cell swelling, and reperfusion in acute regional myocardial ischemia in the isolated porcine heart. Circ Res 49:364–381

    CAS  PubMed  Google Scholar 

  52. Vergara L, Bao X, Cooper M, Bello-Reuss E, Reuss L (2003) Gap-junctional hemichannels are activated by ATP depletion in human renal proximal tubule cells. J Membr Biol 196:173–184

    Article  CAS  PubMed  Google Scholar 

  53. Verma V, Hallett MB, Leybaert L, Martin PE, Evans WH (2009) Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins. Eur J Cell Biol 88:79–90

    Article  CAS  PubMed  Google Scholar 

  54. Verselis VK, Trexler EB, Bukauskas FF (2000) Connexin hemichannels and cell–cell channels: comparison of properties. Braz J Med Biol Res 33:379–389

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119

    Article  CAS  PubMed  Google Scholar 

  56. Wilde AA, Aksnes G (1995) Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia. Cardiovasc Res 29:1–15

    CAS  PubMed  Google Scholar 

  57. Winer BJ (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  58. Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, Ronson RS, Guyton RA, Vinten-Johansen J (2000) Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 45:651–660

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Michel Vermeulen and Sophie Binette for their technical help and assistance.

Funding

This work was supported by grants from Heart and Stroke Foundation of Québec [G-07-BA-2924], the Fonds de Recherche en Santé du Québec [13836], and the Natural Science and Engineering Research Council [341794-07]. Dr. G. Baroudi is a research scholar of the FRSQ.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghayath Baroudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawat, G., Benderdour, M., Rousseau, G. et al. Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch - Eur J Physiol 460, 583–592 (2010). https://doi.org/10.1007/s00424-010-0849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0849-6

Keywords

Navigation