Skip to main content

Advertisement

Log in

Role of autocrine/paracrine mechanisms in response to myocardial strain

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Myocardial strain triggers an autocrine/paracrine mechanism known to participate in myocardial hypertrophy development. After the onset of stretch, there is a rapid augmentation in developed tension due to an increase in myofilament calcium sensitivity (the Frank Starling mechanism) followed by a gradual increase in tension over the next 10–15 min. This second phase is called the slow force response (SFR) to stretch and is known to be the result of an increase in calcium transient amplitude. In the present review, we will discuss what is known thus far about the SFR, which is the in vitro equivalent of the Anrep effect and the mechanical counterpart of the autocrine/paracrine mechanism elicited by myocardial stretch. The chain of events triggered by myocardial stretch comprises: (1) release of angiotensin II, (2) release/formation of endothelin, (3) NADPH oxidase activation and transactivation of the EGFR, (4) mitochondrial reactive oxygen species production, (5) activation of redox-sensitive kinases, (6) NHE-1 hyperactivity, (7) increase in intracellular Na+ concentration, and (8) increase in Ca2+ transient amplitude through the Na+/Ca2+ exchanger. The evidence for each step of the intracellular signaling pathway leading to the development of SFR and their relationship with the mechanisms proposed for cardiac hypertrophy development will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aiello EA, Villa-Abrille MC, Dulce RA, Cingolani HE, Perez NG (2005) Endothelin-1 stimulates the Na+/Ca2+ exchanger reverse mode through intracellular Na + (Na + i)-dependent and Na + i-independent pathways. Hypertension 45:288–293

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, Cingolani HE (1999) Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 85:716–722

    PubMed  CAS  Google Scholar 

  3. Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94

    PubMed  CAS  Google Scholar 

  4. Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, Colucci WS (2001) Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:131–139

    Article  PubMed  CAS  Google Scholar 

  5. Anderson HD, Wang F, Gardner DG (2004) Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene. J Biol Chem 279:9287–9297

    Article  PubMed  CAS  Google Scholar 

  6. Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Opthof T, Fiolet JW (2005) Chronic inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents cellular remodeling in heart failure. Cardiovasc Res 65:83–92

    Article  PubMed  CAS  Google Scholar 

  7. Belus A, White E (2003) Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch. J Physiol 546:501–509

    Article  PubMed  CAS  Google Scholar 

  8. Bluhm WF, Lew WY (1995) Sarcoplasmic reticulum in cardiac length-dependent activation in rabbits. Am J Physiol 269:H965–972

    PubMed  CAS  Google Scholar 

  9. Calaghan S, White E (2004) Activation of Na+–H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. J Physiol 559:205–214

    Article  PubMed  CAS  Google Scholar 

  10. Caldiz CI, Garciarena CD, Dulce RA, Novaretto LP, Yeves AM, Ennis IL, Cingolani HE, Chiappe de Cingolani G, Perez NG (2007) Mitochondrial reactive oxygen species activate the slow force response to stretch in feline myocardium. J Physiol 584:895–905

    Article  PubMed  CAS  Google Scholar 

  11. Camilion de Hurtado MC, Portiansky EL, Perez NG, Rebolledo OR, Cingolani HE (2002) Regression of cardiomyocyte hypertrophy in SHR following chronic inhibition of the Na(+)/H(+) exchanger. Cardiovasc Res 53:862–868

    Article  PubMed  CAS  Google Scholar 

  12. Cingolani HE, Alvarez BV, Ennis IL, Camilion de Hurtado MC (1998) Stretch-induced alkalinization of feline papillary muscle: an autocrine–paracrine system. Circ Res 83:775–780

    PubMed  CAS  Google Scholar 

  13. Cingolani HE, Ennis IL (2007) Sodium–hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100

    Article  PubMed  Google Scholar 

  14. Cingolani HE, Perez NG, Camilion de Hurtado MC (2001) An autocrine/paracrine mechanism triggered by myocardial stretch induces changes in contractility. News Physiol Sci 16:88–91

    PubMed  CAS  Google Scholar 

  15. Cingolani HE, Villa-Abrille MC, Cornelli M, Nolly A, Ennis IL, Garciarena C, Suburo AM, Torbidoni V, Correa MV, Camilionde Hurtado MC, Aiello EA (2006) The positive inotropic effect of angiotensin II: role of endothelin-1 and reactive oxygen species. Hypertension 47:727–734

    Article  PubMed  CAS  Google Scholar 

  16. Cingolani OH, Perez NG, Mosca SM, Schinella GR, Console GM, Ennis IL, Escudero EM, Cingolani HE (2010) AT1 receptor blockade with losartan prevents maladaptive hypertrophy in pressure overload by inhibiting ROS release. Hypertension 56:e119, Abstract

    Google Scholar 

  17. Chen L, Chen CX, Gan XT, Beier N, Scholz W, Karmazyn M (2004) Inhibition and reversal of myocardial infarction-induced hypertrophy and heart failure by NHE-1 inhibition. Am J Physiol 286:H381–387

    CAS  Google Scholar 

  18. Dhalla AK, Hill MF, Singal PK (1996) Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28:506–514

    Article  PubMed  CAS  Google Scholar 

  19. Downey JM, Cohen MV (2008) Free radicals in the heart: friend or foe? Expert Rev Cardiovasc Ther 6:589–591

    Article  PubMed  Google Scholar 

  20. Duquesnes N, Vincent F, Morel E, Lezoualc’h F, Crozatier B (2009) The EGF receptor activates ERK but not JNK Ras-dependently in basal conditions but ERK and JNK activation pathways are predominantly Ras-independent during cardiomyocyte stretch. Int J Biochem Cell Biol 41:1173–1181

    Article  PubMed  CAS  Google Scholar 

  21. Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45:38–54

    Article  PubMed  CAS  Google Scholar 

  22. Eigel BN, Gursahani H, Hadley RW (2004) ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol 286:H955–963

    Article  CAS  Google Scholar 

  23. Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ (2002) Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ Res 90:814–819

    Article  PubMed  CAS  Google Scholar 

  24. Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, Camilion de Hurtado MC, Cingolani HE (2003) Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension 41:1324–1329

    Article  PubMed  CAS  Google Scholar 

  25. Ennis IL, Garciarena CD, Escudero EM, Perez NG, Dulce RA, Camilion de Hurtado MC, Cingolani HE (2007) Normalization of the calcineurin pathway underlies the regression of hypertensive hypertrophy induced by Na+/H+ exchanger-1 (NHE-1) inhibition. Can J Physiol Pharmacol 85:301–310

    Article  PubMed  CAS  Google Scholar 

  26. Ennis IL, Garciarena CD, Perez NG, Dulce RA, Camilion de Hurtado MC, Cingolani HE (2005) Endothelin isoforms and the response to myocardial stretch. Am J Physiol 288:H2925–2930

    CAS  Google Scholar 

  27. Frelin C, Vigne P, Ladoux A, Lazdunski M (1988) The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 174:3–14

    Article  PubMed  CAS  Google Scholar 

  28. Garciarena CD, Caldiz CI, Portiansky EL, Chiappe de Cingolani GE, Ennis IL (2009) Chronic NHE-1 blockade induces an antiapoptotic effect in the hypertrophied heart. J Appl Physiol 106:1325–1331

    Article  PubMed  CAS  Google Scholar 

  29. Hongo K, White E, Le Guennec JY, Orchard CH (1996) Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J Physiol 491(Pt 3):609–619

    PubMed  CAS  Google Scholar 

  30. Hongo K, White E, Orchard CH (1995) The effect of mechanical loading on the response of rat ventricular myocytes to acidosis. Exp Physiol 80:701–712

    PubMed  CAS  Google Scholar 

  31. Hu H, Sachs F (1996) Mechanically activated currents in chick heart cells. J Membr Biol 154:205–216

    Article  PubMed  CAS  Google Scholar 

  32. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Murumo F, Hiroe M (1993) Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Investig 92:398–403

    Article  PubMed  CAS  Google Scholar 

  33. Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M (1996) Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J Biol Chem 271:13609–13615

    Article  PubMed  CAS  Google Scholar 

  34. Kamkin A, Kiseleva I, Isenberg G (2000) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48:409–420

    Article  PubMed  CAS  Google Scholar 

  35. Karmazyn M, Kilic A, Javadov S (2008) The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol 44:647–653

    Article  PubMed  CAS  Google Scholar 

  36. Karmazyn M, Sostaric JV, Gan XT (2001) The myocardial Na+/H+ exchanger: a potential therapeutic target for the prevention of myocardial ischaemic and reperfusion injury and attenuation of postinfarction heart failure. Drugs 61:375–389

    Article  PubMed  CAS  Google Scholar 

  37. Kentish JC, Wrzosek A (1998) Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol 506(Pt 2):431–444

    Article  PubMed  CAS  Google Scholar 

  38. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y (2005) Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 45:438–444

    Article  PubMed  CAS  Google Scholar 

  39. Kondratev D, Christ A, Gallitelli MF (2005) Inhibition of the Na+–H+ exchanger with cariporide abolishes stretch-induced calcium but not sodium accumulation in mouse ventricular myocytes. Cell Calcium 37:69–80

    Article  PubMed  CAS  Google Scholar 

  40. Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS (2005) Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111:1192–1198

    Article  PubMed  CAS  Google Scholar 

  41. Lehoux S, Abe J, Florian JA, Berk BC (2001) 14-3-3 binding to Na+/H+ exchanger isoform-1 is associated with serum-dependent activation of Na+/H+ exchange. J Biol Chem 276:15794–15800

    Article  PubMed  CAS  Google Scholar 

  42. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin–angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Investig 101:1326–1342

    Article  PubMed  CAS  Google Scholar 

  43. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP (2003) Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22:5501–5510

    Article  PubMed  CAS  Google Scholar 

  44. Liang F, Gardner DG (1998) Autocrine/paracrine determinants of strain-activated brain natriuretic peptide gene expression in cultured cardiac myocytes. J Biol Chem 273:14612–14619

    Article  PubMed  CAS  Google Scholar 

  45. Lu Z, Abe J, Taunton J, Lu Y, Shishido T, McClain C, Yan C, Xu SP, Spangenberg TM, Xu H (2008) Reactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity. Circ Res 103:269–278

    Article  PubMed  CAS  Google Scholar 

  46. Luers C, Fialka F, Elgner A, Zhu D, Kockskamper J, von Lewinski D, Pieske B (2005) Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium—a mechanism for the slow force response. Cardiovasc Res 68:454–463

    Article  PubMed  CAS  Google Scholar 

  47. Mendez M, LaPointe MC (2005) PGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation. Am J Physiol 288:H2111–2117

    CAS  Google Scholar 

  48. Minhas KM, Saraiva RM, Schuleri KH, Lehrke S, Zheng M, Saliaris AP, Berry CE, Barouch LA, Vandegaer KM, Li D, Hare JM (2006) Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res 98:271–279

    Article  PubMed  CAS  Google Scholar 

  49. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–65

    Article  PubMed  Google Scholar 

  50. Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, Vatner SF (2003) Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol 284:H1043–1047

    CAS  Google Scholar 

  51. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899

    Article  PubMed  CAS  Google Scholar 

  52. Ortiz MC, Sanabria E, Manriquez MC, Romero JC, Juncos LA (2001) Role of endothelin and isoprostanes in slow pressor responses to angiotensin II. Hypertension 37:505–510

    PubMed  CAS  Google Scholar 

  53. Parmley WW, Chuck L (1973) Length-dependent changes in myocardial contractile state. Am J Physiol 224:1195–1199

    PubMed  CAS  Google Scholar 

  54. Perez NG, Alvarez BV, Camilion de Hurtado MC, Cingolani HE (1995) pHi regulation in myocardium of the spontaneously hypertensive rat. Compensated enhanced activity of the Na(+)–H+ exchanger. Circ Res 77:1192–1200

    PubMed  CAS  Google Scholar 

  55. Perez NG, de Hurtado MC, Cingolani HE (2001) Reverse mode of the Na+–Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circ Res 88:376–382

    PubMed  CAS  Google Scholar 

  56. Perez NG, Villa-Abrille MC, Aiello EA, Dulce RA, Cingolani HE, Camilion de Hurtado MC (2003) A low dose of angiotensin II increases inotropism through activation of reverse Na(+)/Ca(2+) exchange by endothelin release. Cardiovasc Res 60:589–597

    Article  PubMed  CAS  Google Scholar 

  57. Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873

    Article  PubMed  CAS  Google Scholar 

  58. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K, Pagano P, Colucci WS, Sawyer DB (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89:453–460

    Article  PubMed  CAS  Google Scholar 

  59. Rajagopalan S, Laursen JB, Borthayre A, Kurz S, Keiser J, Haleen S, Giaid A, Harrison DG (1997) Role for endothelin-1 in angiotensin II-mediated hypertension. Hypertension 30:29–34

    PubMed  CAS  Google Scholar 

  60. Ros MN, Dulce RA, Perez NG, Camilion de Hurtado MC, Cingolani HE (2005) Endothelin 1 versus endothelin 3 in the development of the slow force response to myocardial stretch. Can J Cardiol 21:435–438

    PubMed  CAS  Google Scholar 

  61. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    Article  PubMed  CAS  Google Scholar 

  62. Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circ Res 8:1077–1091

    PubMed  CAS  Google Scholar 

  63. Sasaki N, Mitsuiye T, Noma A (1992) Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn J Physiol 42:957–970

    Article  PubMed  CAS  Google Scholar 

  64. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34:379–388

    Article  PubMed  CAS  Google Scholar 

  65. Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA (2003) Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 284:C562–570

    PubMed  CAS  Google Scholar 

  66. Szokodi I, Kerkela R, Kubin AM, Sarman B, Pikkarainen S, Konyi A, Horvath IG, Papp L, Toth M, Skoumal R, Ruskoaho H (2008) Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility. Circulation 118:1651–1658

    Article  PubMed  CAS  Google Scholar 

  67. Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, Iijima T, Ito H (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195:287–296

    Article  PubMed  CAS  Google Scholar 

  68. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5:789–794

    Article  PubMed  CAS  Google Scholar 

  69. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Investig 115:1221–1231

    PubMed  CAS  Google Scholar 

  70. Tamamori M, Ito H, Adachi S, Akimoto H, Marumo F, Hiroe M (1996) Endothelin-3 induces hypertrophy of cardiomyocytes by the endogenous endothelin-1-mediated mechanism. J Clin Investig 97:366–372

    Article  PubMed  CAS  Google Scholar 

  71. Villa-Abrille MC, Caldiz CI, Ennis IL, Nolly MB, Casarini MJ, Chiappe de Cingolani GE, Cingolani HE, Perez NG (2010) The Anrep effect requires transactivation of the epidermal growth factor receptor. J Physiol 588:1579–1590

    Article  PubMed  CAS  Google Scholar 

  72. von Anrep G (1912) On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol 45:307–317

    Google Scholar 

  73. von Lewinski D, Stumme B, Fialka F, Luers C, Pieske B (2004) Functional relevance of the stretch-dependent slow force response in failing human myocardium. Circ Res 94:1392–1398

    Article  Google Scholar 

  74. Ward ML, Allen DG (2010) Stretch-activated channels in the heart: contribution to cardiac performance. In: Mechanosensitivity in Cells and Tissues, Mechanosensitivity of the Heart, Vol. 3, Part 2, pages 141–167, Kamkin & Kiseleva (eds.), Springer

  75. Ward ML, Williams IA, Chu Y, Cooper PJ, Ju YK, Allen DG (2008) Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog Biophys Mol Biol 97:232–249

    Article  PubMed  CAS  Google Scholar 

  76. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005

    Article  PubMed  CAS  Google Scholar 

  77. Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF, Sadoshima J (2003) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Investig 112:1395–1406

    PubMed  CAS  Google Scholar 

  78. Yoshida H, Karmazyn M (2000) Na(+)/H(+) exchange inhibition attenuates hypertrophy and heart failure in 1-wk postinfarction rat myocardium. Am J Physiol 278:H300–304

    CAS  Google Scholar 

  79. Zeng T, Bett GC, Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol 278:H548–557

    CAS  Google Scholar 

  80. Zhai P, Galeotti J, Liu J, Holle E, Yu X, Wagner T, Sadoshima J (2006) An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy. Circ Res 99:528–536

    Article  PubMed  CAS  Google Scholar 

  81. Zhang YH, Dingle L, Hall R, Casadei B (2009) The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochim Biophys Acta 1787:811–817

    Article  PubMed  CAS  Google Scholar 

  82. Zhang YH, Hancox JC (2000) Gadolinium inhibits Na(+)–Ca(2+) exchanger current in guinea-pig isolated ventricular myocytes. Br J Pharmacol 130:485–488

    Article  PubMed  CAS  Google Scholar 

  83. Zhou C, Ziegler C, Birder LA, Stewart AF, Levitan ES (2006) Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 98:1040–1047

    Article  PubMed  CAS  Google Scholar 

  84. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  PubMed  CAS  Google Scholar 

  85. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio E. Cingolani.

Additional information

The authors are established investigators of CONICET, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cingolani, H.E., Ennis, I.L., Aiello, E.A. et al. Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Arch - Eur J Physiol 462, 29–38 (2011). https://doi.org/10.1007/s00424-011-0930-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0930-9

Keywords

Navigation