Skip to main content
Log in

Haemolysis induced by α-toxin from Staphylococcus aureus requires P2X receptor activation

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recently, it was documented that α-haemolysin (HlyA) from Escherichia coli uses erythrocyte P2 receptors cause lysis. This finding was surprising as it appeared firmly established that HlyA-dependent pore formation per se is sufficient for full cell lysis. We discovered that HlyA induced a sequential process of shrinkage and swelling and that the final haemolysis is completely prevented by blockers of P2X receptors and pannexin channels. This finding has potential clinical relevance as it may offer specific pharmacological interference to ameliorate haemolysis inflicted by pore-forming bacterial toxins. In this context, it is essential to know whether this is specific to HlyA-induced cell damage or if other bacterial pore-forming toxins involve purinergic signals to orchestrate haemolysis. Here, we investigate if the haemolysis produced by α-toxin from Staphylococcus aureus involves P2 receptor activation. We observed that α-toxin-induced haemolysis is completely blocked by the unselective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid. Moreover, several selective blockers of P2X1 and P2X7 ionotropic receptors abolished haemolysis in murine and equine erythrocytes. Inhibitors of pannexin channels partially reduced the α-toxin induced lysis. Thus, we conclude that α-toxin, similar to HlyA from E. coli produces cell damage by specific activation of a purinergic signalling cascade. These data indicate that pore-forming toxins in general require purinergic signalling to elicit their toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arbuthnott JP, Lominski IR, Wright MR (1968) Inhibition of staphylococcal alpha-toxin. The effect of aromatic polysulphonic acids on the lethal effect of alpha-toxin in mice. Biochem J 108:49–55

    PubMed  CAS  Google Scholar 

  2. Arvand M, Bhakdi S, Dahlback B, Preissner KT (1990) Staphylococcus aureus α-toxin attack on human platelets promotes assembly of the prothrombinase complex. J Biol Chem 265:14377–14381

    PubMed  CAS  Google Scholar 

  3. Bantel H, Sinha B, Domschke W, Peters G, Schulze-Osthoff K, Janicke RU (2001) Alpha-toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol 155:637–648

    Article  PubMed  CAS  Google Scholar 

  4. Benz R, Schmid A, Wagner W, Goebel W (1989) Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect Immun 57:887–895

    PubMed  CAS  Google Scholar 

  5. Bezrukov MS, Vodyanoy I, Brutyan RA, Kasianowicz JJ (1996) Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29:8517–8522

    Article  CAS  Google Scholar 

  6. Bhakdi S, Mackman N, Nicaud JM, Holland IB (1986) Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun 52:63–69

    PubMed  CAS  Google Scholar 

  7. Bhakdi S, Muhly M, Korom S, Hugo F (1989) Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alpha-toxin on human monocytes. Infect Immun 57:3512–3519

    PubMed  CAS  Google Scholar 

  8. Bhakdi S, Weller U, Walev I, Martin E, Jonas D, Palmer M (1993) A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol 182:167–175

    Article  PubMed  CAS  Google Scholar 

  9. Buerke U, Carter JM, Schlitt A, Russ M, Schmidt H, Sibelius U, Grandel U, Grimminger F, Seeger W, Mueller-Werdan U, Werdan K, Buerke M (2008) Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy. Shock 29:497–503

    Article  PubMed  CAS  Google Scholar 

  10. Cassidy PS, Harshman S (1973) The binding of staphylococcal 125I-alpha-toxin (B) to erythrocytes. J Biol Chem 248:5545–5546

    PubMed  CAS  Google Scholar 

  11. Cooper LZ, Madoff MA, Weinstein L (1964) Hemolysis of rabbit erythrocytes by purified staphylococcal alpha-toxin. I. kinetics of the lytic reaction. J Bacteriol 87:127–135

    PubMed  CAS  Google Scholar 

  12. Eisen V, Loveday C (1973) Effects of suramin on complement, blood clotting, fibrinolysis and kinin formation. Br J Pharmacol 49:678–687

    PubMed  CAS  Google Scholar 

  13. Essmann F, Bantel H, Totzke G, Engels IH, Sinha B, Schulze-Osthoff K, Janicke RU (2003) Staphylococcus aureus alpha-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death Differ 10:1260–1272

    Article  PubMed  CAS  Google Scholar 

  14. Foller M, Bobbala D, Koka S, Boini KM, Mahmud H, Kasinathan RS, Shumilina E, Amann K, Beranek G, Sausbier U, Ruth P, Sausbier M, Lang F, Huber SM (2010) Functional significance of the intermediate conductance Ca2+-activated K+ channel for the short-term survival of injured erythrocytes. Pflugers Arch 460:1029–1044

    Article  PubMed  Google Scholar 

  15. Fussle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T, Wellensiek HJ (1981) On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Cell Biol 91:83–94

    Article  PubMed  CAS  Google Scholar 

  16. Hechler B, Eckly A, Ohlmann P, Cazenave JP, Gachet C (1998) The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol 103:858–866

    Article  PubMed  CAS  Google Scholar 

  17. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  PubMed  CAS  Google Scholar 

  18. Hyland C, Vuillard L, Hughes C, Koronakis V (2001) Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J Bacteriol 183:5364–5370

    Article  PubMed  CAS  Google Scholar 

  19. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273:2030–2034

    Article  PubMed  CAS  Google Scholar 

  20. Jonas D, Walev I, Berger T, Liebetrau M, Palmer M, Bhakdi S (1994) Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect Immun 62:1304–1312

    PubMed  CAS  Google Scholar 

  21. Jorgensen SE, Hammer RF, Wu GK (1980) Effects of a single hit from the alpha hemolysin produced by Escherichia coli on the morphology of sheep erythrocytes. Infect Immun 27:988–994

    PubMed  CAS  Google Scholar 

  22. Jorgensen SE, Mulcahy PF, Wu GK, Louis CF (1983) Calcium accumulation in human and sheep erythrocytes that is induced by Escherichia coli hemolysin. Toxicon 21:717–727

    Article  PubMed  CAS  Google Scholar 

  23. Lappin E, Ferguson AJ (2009) Gram-positive toxic shock syndromes. Lancet Infect Dis 9:281–290

    Article  PubMed  CAS  Google Scholar 

  24. Leclercq R (2009) Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin Microbiol Infect 15:224–231

    Article  PubMed  CAS  Google Scholar 

  25. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  26. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Article  PubMed  CAS  Google Scholar 

  27. McGillivray DJ, Valincius G, Heinrich F, Robertson JW, Vanderah DJ, Febo-Ayala W, Ignatjev I, Losche M, Kasianowicz JJ (2009) Structure of functional Staphylococcus aureus alpha-hemolysin channels in tethered bilayer lipid membranes. Biophys J 96:1547–1553

    Article  PubMed  CAS  Google Scholar 

  28. Menestrina G (1986) Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J Membr Biol 90:177–190

    Article  PubMed  CAS  Google Scholar 

  29. Parrillo JE (1989) The cardiovascular pathophysiology of sepsis. Annu Rev Med 40:469–485

    Article  PubMed  CAS  Google Scholar 

  30. Qiu F, Dahl GP (2009) A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol 296(2):C250–5.

    Google Scholar 

  31. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha, beta-methylene ATP. Thromb Haemost 85:303–308

    PubMed  CAS  Google Scholar 

  32. Sarri E, Bockmann I, Kempter U, Valeva A, von Eichel-Streiber C, Weichel O, Klein J (1998) Regulation of phospholipase D activity in synaptosomes permeabilized with Staphylococcus aureus alpha-toxin. FEBS Lett 440:287–290

    Article  PubMed  CAS  Google Scholar 

  33. Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM (2001) P2y12, a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 283:379–383

    Article  PubMed  CAS  Google Scholar 

  34. Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, Herbert JM (1998) Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett 422:291–295

    Article  PubMed  CAS  Google Scholar 

  35. Sibelius U, Grandel U, Buerke M, Mueller D, Kiss L, Kraemer HJ, Braun-Dullaeus R, Haberbosch W, Seeger W, Grimminger F (2000) Staphylococcal alpha-toxin provokes coronary vasoconstriction and loss in myocardial contractility in perfused rat hearts: role of thromboxane generation. Circulation 101:78–85

    PubMed  CAS  Google Scholar 

  36. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  PubMed  CAS  Google Scholar 

  37. Skals M, Jensen UB, Ousingsawat J, Kunzelmann K, Leipziger J, Praetorius HA (2010) Escherichia coli alpha-hemolysin triggers shrinkage of erythrocytes via KCa3.1 and TMEM16A channels with subsequent phosphatidylserine exposure. J Biol Chem 285:15557–15565

    Article  PubMed  CAS  Google Scholar 

  38. Skals MG, Jorgensen NR, Leipziger J, Praetorius HA (2009) Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci USA 106:4030–4035

    Article  PubMed  CAS  Google Scholar 

  39. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  40. Walev I, Martin E, Jonas D, Mohamadzadeh M, Muller-Klieser W, Kunz L, Bhakdi S (1993) Staphylococcal alpha-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. Infect Immun 61:4972–4979

    PubMed  CAS  Google Scholar 

  41. Wright MR, Arbuthnott JP, Lominski IR (1968) Inhibition of staphylococcal alpha-toxin. A kinetic evaluation of aromatic polysulphonic acids as inhibitors of haemolysis. Biochem J 108:41–48

    PubMed  CAS  Google Scholar 

  42. Yarovinsky TO, Monick MM, Husmann M, Hunninghake GW (2008) Interferons increase cell resistance to Staphylococcal alpha-toxin. Infect Immun 76:571–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Edith Bjoern Moeller for the skilled technical assistance and Niklas R. Jorgensen for the collaboration with regards the P2X7−/− mice. The project is financially supported by the Danish Medical Research Council, Danish National Research Foundation and the Aarhus University Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle A. Praetorius.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

(PDF 264 kb)

Suppl. Fig.2

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skals, M., Leipziger, J. & Praetorius, H.A. Haemolysis induced by α-toxin from Staphylococcus aureus requires P2X receptor activation. Pflugers Arch - Eur J Physiol 462, 669–679 (2011). https://doi.org/10.1007/s00424-011-1010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1010-x

Keywords

Navigation