Skip to main content
Log in

ClC-5 mutations associated with Dent’s disease: a major role of the dimer interface

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Dent’s disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl/H+ exchanger ClC-5 gene CLCN5 are frequently associated with Dent’s disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent’s disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent’s disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent’s disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abagyan R, Trotov M, Kuznetsov D (1994) ICM-A a new method for structure modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  2. Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–807

    Article  PubMed  CAS  Google Scholar 

  3. Accardi A, Walden M, Nguitragool W, Jayaram H, Williams C, Miller C (2005) Separate ion pathways in a Cl/H+ exchanger. J Gen Physiol 126:563–570

    Article  PubMed  CAS  Google Scholar 

  4. Becq F, Mall MA, Sheppard DN, Conese M, Zegarra-Moran O (2011) Pharmacological therapy for cystic fibrosis: from bench to bedside. J Cyst Fibros 10(Suppl 2):S129–145

    Article  PubMed  CAS  Google Scholar 

  5. Chen TY, Hwang TC (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88:351–387

    Article  PubMed  CAS  Google Scholar 

  6. Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A 100:8472–8477

    Article  PubMed  CAS  Google Scholar 

  7. Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867

    Article  PubMed  CAS  Google Scholar 

  8. Dent CE, Friedman M (1964) Hypercalcuric rickets associated with renal tubular damage. Arch Dis Child 39:240–249

    Article  PubMed  CAS  Google Scholar 

  9. Devuyst O, Thakker RV (2010) Dent's disease. Orphanet J Rare Dis 5:28

    Article  PubMed  Google Scholar 

  10. Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257

    Article  PubMed  CAS  Google Scholar 

  11. Dowland LK, Luyckx VA, Enck AH, Leclercq B, Yu AS (2000) Molecular cloning and characterization of an intracellular chloride channel in the proximal tubule cell line, LLC-PK1. J Biol Chem 275:37765–37773

    Article  PubMed  CAS  Google Scholar 

  12. Dutzler R (2007) A structural perspective on ClC channel and transporter function. FEBS Lett 581:2839–2844

    Article  PubMed  CAS  Google Scholar 

  13. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  14. Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    Article  PubMed  CAS  Google Scholar 

  15. Fahlke C, Yu HT, Beck CL, Rhodes TH, George AL Jr (1997) Pore-forming segments in voltage-gated chloride channels. Nature 390:529–532

    Article  PubMed  CAS  Google Scholar 

  16. Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–641

    Article  PubMed  CAS  Google Scholar 

  17. Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747

    Article  PubMed  CAS  Google Scholar 

  18. Grand T, Mordasini D, L'Hoste S, Pennaforte T, Genete M, Biyeyeme MJ, Vargas-Poussou R, Blanchard A, Teulon J, Lourdel S (2009) Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing. Kidney Int 76:999–1005

    Article  PubMed  CAS  Google Scholar 

  19. Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S (2011) Heterogeneity in the processing of CLCN5 mutants related to Dent disease. Hum Mutat 32:476–483

    Article  PubMed  CAS  Google Scholar 

  20. Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7:103–124

    Article  PubMed  CAS  Google Scholar 

  21. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A 95:8075–8080

    Article  PubMed  CAS  Google Scholar 

  22. Gunther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse - an animal model for Dent's disease. Pflugers Arch 445:456–462

    PubMed  CAS  Google Scholar 

  23. Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–946

    Article  PubMed  CAS  Google Scholar 

  24. Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent Disease with mutations in OCRL1. Am J Hum Genet 76:260–267

    Article  PubMed  CAS  Google Scholar 

  25. Hryciw DH, Wang Y, Devuyst O, Pollock CA, Poronnik P, Guggino WB (2003) Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines. J Biol Chem 278:40169–40176

    Article  PubMed  CAS  Google Scholar 

  26. Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P (2004) Nedd4-2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells. J Biol Chem 279:54996–55007

    Article  PubMed  CAS  Google Scholar 

  27. Hryciw DH, Ekberg J, Ferguson C, Lee A, Wang D, Parton RG, Pollock CA, Yun CC, Poronnik P (2006) Regulation of albumin endocytosis by PSD95/Dlg/ZO-1 (PDZ) scaffolds. Interaction of Na+-H+ exchange regulatory factor-2 with ClC-5. J Biol Chem 281:16068–16077

    Article  PubMed  CAS  Google Scholar 

  28. Hryciw DH, Ekberg J, Pollock CA, Poronnik P (2006) ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 38:1036–1042

    Article  PubMed  CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  30. Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36

    Article  PubMed  CAS  Google Scholar 

  31. Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    Article  PubMed  CAS  Google Scholar 

  32. Lloyd SE, Gunther W, Pearce SH, Thomson A, Bianchi ML, Bosio M, Craig IW, Fisher SE, Scheinman SJ, Wrong O, Jentsch TJ, Thakker RV (1997) Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Hum Mol Genet 6:1233–1239

    Article  PubMed  CAS  Google Scholar 

  33. Lossin C, George AL Jr (2008) Myotonia congenita. Adv Genet 63:25–55

    Article  PubMed  CAS  Google Scholar 

  34. Ludwig M, Doroszewicz J, Seyberth HW, Bokenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237

    Article  PubMed  Google Scholar 

  35. Matsuda JJ, Filali MS, Collins MM, Volk KA, Lamb FS (2010) The ClC-3 Cl-/H+ antiporter becomes uncoupled at low extracellular pH. J Biol Chem 285:2569–2579

    Article  PubMed  CAS  Google Scholar 

  36. Meyer S, Savaresi S, Forster IC, Dutzler R (2007) Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat Struct Mol Biol 14:60–67

    Article  PubMed  CAS  Google Scholar 

  37. Mo L, Xiong W, Qian T, Sun H, Wills NK (2004) Coexpression of complementary fragments of ClC-5 and restoration of chloride channel function in a Dent's disease mutation. Am J Physiol Cell Physiol 286:C79–89

    Article  PubMed  CAS  Google Scholar 

  38. Morimoto T, Uchida S, Sakamoto H, Kondo Y, Hanamizu H, Fukui M, Tomino Y, Nagano N, Sasaki S, Marumo F (1998) Mutations in CLCN5 chloride channel in Japanese patients with low molecular weight proteinuria. J Am Soc Nephrol 9:811–818

    PubMed  CAS  Google Scholar 

  39. Neagoe I, Stauber T, Fidzinski P, Bergsdorf EY, Jentsch TJ (2010) The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression. J Biol Chem 285:21689–21697

    Article  PubMed  CAS  Google Scholar 

  40. Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–1401

    Article  PubMed  CAS  Google Scholar 

  41. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    Article  PubMed  CAS  Google Scholar 

  42. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408:369–373

    Article  PubMed  CAS  Google Scholar 

  43. Pook MA, Wrong O, Wooding C, Norden AG, Feest TG, Thakker RV (1993) Dent's disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet 2:2129–2134

    Article  PubMed  CAS  Google Scholar 

  44. Reed AA, Loh NY, Terryn S, Lippiat JD, Partridge C, Galvanovskis J, Williams SE, Jouret F, Wu FT, Courtoy PJ, Nesbit MA, Rorsman P, Devuyst O, Ashcroft FM, Thakker RV (2010) CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease. Am J Physiol Renal Physiol 298:F365–380

    Article  PubMed  CAS  Google Scholar 

  45. Sakamoto H, Sado Y, Naito I, Kwon TH, Inoue S, Endo K, Kawasaki M, Uchida S, Nielsen S, Sasaki S, Marumo F (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am J Physiol 277:F957–965

    PubMed  CAS  Google Scholar 

  46. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427

    Article  PubMed  CAS  Google Scholar 

  47. Scheinman SJ (1998) X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int 53:3–17

    Article  PubMed  CAS  Google Scholar 

  48. Smith AJ, Reed AA, Loh NY, Thakker RV, Lippiat JD (2009) Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. Am J Physiol Renal Physiol 296:F390–397

    Article  PubMed  CAS  Google Scholar 

  49. Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–31177

    Article  PubMed  CAS  Google Scholar 

  50. Suzuki T, Rai T, Hayama A, Sohara E, Suda S, Itoh T, Sasaki S, Uchida S (2006) Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers. J Cell Physiol 206:792–798

    Article  PubMed  CAS  Google Scholar 

  51. Tanuma A, Sato H, Takeda T, Hosojima M, Obayashi H, Hama H, Iino N, Hosaka K, Kaseda R, Imai N, Ueno M, Yamazaki M, Sakimura K, Gejyo F, Saito A (2007) Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent's disease. Nephron Physiol 107:p87–97

    Article  PubMed  CAS  Google Scholar 

  52. Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, Johnson M, Kocisko M, Evans WE, Foroud T, Econs MJ (2003) Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res 18:1513–1518

    Article  PubMed  CAS  Google Scholar 

  53. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Cai H, Cebotaru L, Hryciw DH, Weinman EJ, Donowitz M, Guggino SE, Guggino WB (2005) ClC-5: role in endocytosis in the proximal tubule. Am J Physiol Renal Physiol 289:F850–862

    Article  PubMed  CAS  Google Scholar 

  55. Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ (2009) Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. Faseb J 23:4056–4068

    Article  PubMed  CAS  Google Scholar 

  56. Wellhauser L, Luna-Chavez C, D'Antonio C, Tainer J, Bear CE (2011) ATP induces conformational changes in the carboxyl-terminal region of ClC-5. J Biol Chem 286:6733–6741

    Article  PubMed  CAS  Google Scholar 

  57. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    Article  PubMed  CAS  Google Scholar 

  58. Wrong OM, Norden AG, Feest TG (1994) Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493

    PubMed  CAS  Google Scholar 

  59. Wu F, Roche P, Christie PT, Loh NY, Reed AA, Esnouf RM, Thakker RV (2003) Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship. Kidney Int 63:1426–1432

    Article  PubMed  CAS  Google Scholar 

  60. Wu F, Reed AA, Williams SE, Loh NY, Lippiat JD, Christie PT, Large O, Bettinelli A, Dillon MJ, Goldraich NP, Hoppe B, Lhotta K, Loirat C, Malik R, Morel D, Kotanko P, Roussel B, Rubinger D, Schrander-Stumpel C, Serdaroglu E, Nesbit MA, Ashcroft F, Thakker RV (2009) Mutational analysis of CLC-5, cofilin and CLC-4 in patients with Dent's disease. Nephron Physiol 112:p53–62

    Article  PubMed  CAS  Google Scholar 

  61. Yamamoto K, Cox JP, Friedrich T, Christie PT, Bald M, Houtman PN, Lapsley MJ, Patzer L, Tsimaratos M, Van'T Hoff WG, Yamaoka K, Jentsch TJ, Thakker RV (2000) Characterization of renal chloride channel (CLCN5) mutations in Dent's disease. J Am Soc Nephrol 11:1460–1468

    PubMed  CAS  Google Scholar 

  62. Zdebik AA, Zifarelli G, Bergsdorf EY, Soliani P, Scheel O, Jentsch TJ, Pusch M (2008) Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J Biol Chem 283:4219–4227

    Article  PubMed  CAS  Google Scholar 

  63. Zielenski J, Tsui LC (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807

    Article  PubMed  CAS  Google Scholar 

  64. Zifarelli G, Pusch M (2009) Intracellular regulation of human ClC-5 by adenine nucleotides. EMBO Rep 10:1111–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in our laboratories was funded in part by grants from the French ANR program (ANR-05-MRAR-033-01), the Fondation du Rein and ECOS Conicyt C10S03. CECs is funded by Conicyt PFB. The English text has been edited by M. Ghosh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Lourdel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourdel, S., Grand, T., Burgos, J. et al. ClC-5 mutations associated with Dent’s disease: a major role of the dimer interface. Pflugers Arch - Eur J Physiol 463, 247–256 (2012). https://doi.org/10.1007/s00424-011-1052-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1052-0

Keywords

Navigation