Skip to main content

Advertisement

Log in

Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na+-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug–drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin–proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abel JJ, Rowntree LG (1909) On the pharmacological action of some phthaleins and their derivatives, with especial reference to their behavior as purgatives. J Pharmacol Exp Ther 1:231–264

    Google Scholar 

  2. Agola JO, Jim PA, Ward HH, BasuRay S, Wandinger-Ness A (2011) Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 80:305–318

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, Lesage G (2005) Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 41:1037–1045

    CAS  PubMed  Google Scholar 

  4. Anwer MS (2004) Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 39:581–589

    CAS  PubMed  Google Scholar 

  5. Anwer MS, Gillin H, Mukhopadhyay S, Balasubramaniyan N, Suchy FJ, Ananthanarayanan M (2005) Dephosphorylation of Ser-226 facilitates plasma membrane retention of Ntcp. J Biol Chem 280:33687–33692

    CAS  PubMed  Google Scholar 

  6. Anwer MS, Hegner D (1978) Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe-Zeylers Z Physiol Chem 359:181–192

    CAS  Google Scholar 

  7. Bajor A, Gillberg PG, Abrahamsson H (2010) Bile acids: short and long term effects in the intestine. Scand J Gastroenterol 45:645–664

    PubMed  Google Scholar 

  8. Balakrishnan A, Polli JE (2006) Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 3:223–230

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Baringhaus KH, Matter H, Stengelin S, Kramer W (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit: II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter. J Lipid Res 40:2158–2168

    CAS  PubMed  Google Scholar 

  10. Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA, Kilicarslan A, Rust C, Berr F, Tschopp O, Gerken G, Friedman SL, Geier A, Canbay A (2013) Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57:1394–1406

    CAS  PubMed  Google Scholar 

  11. Berr F, Simon FR, Reichen J (1984) Ethynylestradiol impairs bile salt uptake and Na–K pump function of rat hepatocytes. Am J Physiol 247:G437–G443

    CAS  PubMed  Google Scholar 

  12. Beuers U, Bilzer M, Chittattu A, Kullak-Ublick GA, Keppler D, Paumgartner G, Dombrowski F (2001) Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 33:1206–1216

    CAS  PubMed  Google Scholar 

  13. Beuers U, Probst I, Soroka C, Boyer JL, Kullak-Ublick GA, Paumgartner G (1999) Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes. Hepatology 29:477–482

    CAS  PubMed  Google Scholar 

  14. Bhat BG, Rapp SR, Beaudry JA, Napawan N, Butteiger DN, Hall KA, Null CL, Luo Y, Keller BT (2003) Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. J Lipid Res 44:1614–1621

    CAS  PubMed  Google Scholar 

  15. Blumrich M, Petzinger E (1990) Membrane transport of conjugated and unconjugated bile acids into hepatocytes is susceptible to SH-blocking reagents. Biochim Biophys Acta 1029:1–12

    CAS  PubMed  Google Scholar 

  16. Blumrich M, Petzinger E (1993) Two distinct types of SH-groups are necessary for bumetanide and bile acid uptake into isolated rat hepatocytes. Biochim Biophys Acta 1149:278–284

    CAS  PubMed  Google Scholar 

  17. Boelsterli UA, Rakhit G, Balazs T (1983) Modulation by S-adenosyl-l-methionine of hepatic Na+, K+-ATPase, membrane fluidity, and bile flow in rats with ethinyl estradiol-induced cholestasis. Hepatology 3:12–17

    CAS  PubMed  Google Scholar 

  18. Bossard R, Stieger B, O’Neill B, Fricker G, Meier PJ (1993) Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest 91:2714–2720

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Botham KM, Suckling KE (1986) The effect of dibutyryl cyclic AMP on the uptake of taurocholic acid by isolated rat liver cells. Biochim Biophys Acta 883:26–32

    CAS  PubMed  Google Scholar 

  20. Bouscarel B, Kroll SD, Fromm H (1999) Signal transduction and hepatocellular bile acid transport: cross talk between bile acids and second messengers. Gastroenterology 117:433–452

    CAS  PubMed  Google Scholar 

  21. Bouscarel B, Reza S, Dougherty LA, Fromm H, Nussbaum R (1996) Regulation of taurocholate and ursodeoxycholate uptake in hamster hepatocytes by Ca2+-mobilizing agents. Am J Physiol 271:G1084–G1095

    CAS  PubMed  Google Scholar 

  22. Boyer JL, Ng OC, Ananthanarayanan M, Hofmann AF, Schteingart CD, Hagenbuch B, Stieger B, Meier PJ (1994) Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Am J Physiol 266:G382–G387

    CAS  PubMed  Google Scholar 

  23. Brouwer KL, Keppler D, Hoffmaster KA, Bow DA, Cheng Y, Lai Y, Palm JE, Stieger B, Evers R (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94:95–112

    CAS  PubMed  Google Scholar 

  24. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    CAS  PubMed  Google Scholar 

  25. Chen HL, Liu YJ, Chen HL, Wu SH, Ni YH, Ho MC, Lai HS, Hsu WM, Hsu HY, Tseng HC, Jeng YM, Chang MH (2008) Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia. Pediatr Res 63:667–673

    CAS  PubMed  Google Scholar 

  26. Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, Croom D, Ross S, Collins J, Rajpal D, Hamlet K, Smith C, Gedulin B (2012) Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 302:E68–E76

    CAS  PubMed  Google Scholar 

  27. Chey WD, Camilleri M, Chang L, Rikner L, Graffner H (2011) A randomized placebo-controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol 106:1803–1812

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chung KK, Dawson VL, Dawson TM (2005) S-nitrosylation in Parkinson’s disease and related neurodegenerative disorders. Methods Enzymol 396:139–150

    CAS  PubMed  Google Scholar 

  29. Claessen JH, Kundrat L, Ploegh HL (2012) Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 22:22–32

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Clayton PT (2011) Disorders of bile acid synthesis. J Inherit Metab Dis 34:593–604

    CAS  PubMed  Google Scholar 

  31. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157–G169

    CAS  PubMed  Google Scholar 

  32. Csanaky IL, Lu H, Zhang Y, Ogura K, Choudhuri S, Klaassen CD (2011) Organic anion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: studies in Oatp1b2-null mice. Hepatology 53:272–281

    CAS  PubMed Central  PubMed  Google Scholar 

  33. da Claro ST, Polli JE, Swaan PW (2013) The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Asp Med 34:252–269

    Google Scholar 

  34. Dawson PA (2011) Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol 201:169–203

    CAS  PubMed  Google Scholar 

  35. Dawson PA, Hubbert ML, Rao A (2010) Getting the mOST from OST: role of organic solute transporter, OSTalpha–OSTbeta, in bile acid and steroid metabolism. Biochim Biophys Acta 1801:994–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50:2340–2357

    CAS  PubMed  Google Scholar 

  37. de Graaf W, Hausler S, Heger M, van Ginhoven TM, van Cappellen G, Bennink RJ, Kullak-Ublick GA, Hesselmann R, van Gulik TM, Stieger B (2011) Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol 54:738–745

    PubMed  Google Scholar 

  38. de Waart DR, Hausler S, Vlaming ML, Kunne C, Hanggi E, Gruss HJ, Oude Elferink RP, Stieger B (2010) Hepatic transport mechanisms of cholyl-l-lysyl-fluorescein. J Pharmacol Exp Ther 334:78–86

    PubMed  Google Scholar 

  39. Derakhshan B, Hao G, Gross SS (2007) Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res 75:210–219

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Dong Z, Ekins S, Polli JE (2013) Structure–activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP). Mol Pharm 10:1008–1019

    CAS  PubMed  Google Scholar 

  41. Doring B, Lutteke T, Geyer J, Petzinger E (2012) The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr 70:105–168

    PubMed  Google Scholar 

  42. Dranoff JA, McClure M, Burgstahler AD, Denson LA, Crawford AR, Crawford JM, Karpen SJ, Nathanson MH (1999) Short-term regulation of bile acid uptake by microfilament-dependent translocation of ntcp to the plasma membrane. Hepatology 30:223–229

    CAS  PubMed  Google Scholar 

  43. Engel A, Oswald S, Siegmund W, Keiser M (2012) Pharmaceutical excipients influence the function of human uptake transporting proteins. Mol Pharm 9:2577–2581

    CAS  PubMed  Google Scholar 

  44. Faber KN, Muller M, Jansen PL (2003) Drug transport proteins in the liver. Adv Drug Deliv Rev 55:107–124

    CAS  PubMed  Google Scholar 

  45. Foley K, Boguslavsky S, Klip A (2011) Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 50:3048–3061

    CAS  PubMed  Google Scholar 

  46. Folli F, Alvaro D, Gigliozzi A, Bassotti C, Kahn CR, Pontiroli AE, Capocaccia L, Jezequel AM, Benedetti A (1997) Regulation of endocytic–transcytotic pathways and bile secretion by phosphatidylinositiol 3-kinase in rats. Gastroenterology 113:954–965

    CAS  PubMed  Google Scholar 

  47. Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gates A, Hohenester S, Anwer MS, Webster CR (2009) cAMP-GEF cytoprotection by Src tyrosine kinase activation of phosphoinositide-3-kinase p110 beta}/{alpha in rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 296:G764–G774

    CAS  PubMed  Google Scholar 

  49. Geier A, Fickert P, Trauner M (2006) Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatol 3:574–585

    CAS  PubMed  Google Scholar 

  50. Geyer J, Wilke T, Petzinger E (2006) The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedeberg’s Arch Pharmacol 372:413–431

    CAS  Google Scholar 

  51. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    CAS  PubMed  Google Scholar 

  52. Glebe D, Urban S (2007) Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol 13:22–38

    CAS  PubMed  Google Scholar 

  53. Gonzalez R, Cruz A, Ferrin G, Lopez-Cillero P, Fernandez-Rodriguez R, Briceno J, Gomez MA, Rufian S, Mata ML, Martinez-Ruiz A, Marin JJ, Muntane J (2011) Nitric oxide mimics transcriptional and post-translational regulation during alpha-tocopherol cytoprotection against glycochenodeoxycholate-induced cell death in hepatocytes. J Hepatol 55:133–144

    CAS  PubMed  Google Scholar 

  54. Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B (2012) Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug–drug interactions. J Pharm Pharmacol 64:1523–1548

    CAS  PubMed  Google Scholar 

  55. Greupink R, Nabuurs SB, Zarzycka B, Verweij V, Monshouwer M, Huisman MT, Russel FG (2012) In silico identification of potential cholestasis-inducing agents via modeling of Na(+)-dependent taurocholate cotransporting polypeptide substrate specificity. Toxicol Sci 129:35–48

    CAS  PubMed  Google Scholar 

  56. Gripon P, Cannie I, Urban S (2005) Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 79:1613–1622

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Grüne S, Engelking LR, Anwer MS (1993) Role of intracellular calcium and protein kinases in the activation of hepatic Na+/taurocholate cotransport by cyclic AMP. J Biol Chem 268:17734–17741

    PubMed  Google Scholar 

  58. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    CAS  PubMed  Google Scholar 

  59. Hagenbuch B, Dawson P (2004) The sodium bile salt cotransport family SLC10. Pflugers Arch 447:566–570

    CAS  PubMed  Google Scholar 

  60. Hagenbuch B, Jacquemin E, Meier PJ (1994) Na+-dependent and Na+-independent bile acid uptake systems in the liver. Cell Physiol Biochem 4:198–205

    CAS  Google Scholar 

  61. Hagenbuch B, Lubbert H, Stieger B, Meier PJ (1990) Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem 265:5357–5360

    CAS  PubMed  Google Scholar 

  62. Hagenbuch B, Scharschmidt BF, Meier PJ (1996) Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochem J 316(Pt 3):901–904

    CAS  PubMed  Google Scholar 

  63. Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med 34:396–412

    CAS  Google Scholar 

  64. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 88:10629–10633

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Halilbasic E, Claudel T, Trauner M (2013) Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 58:155–168

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hallen S, Fryklund J, Sachs G (2000) Inhibition of the human sodium/bile acid cotransporters by side-specific methanethiosulfonate sulfhydryl reagents: substrate-controlled accessibility of site of inactivation. Biochemistry 39:6743–6750

    CAS  PubMed  Google Scholar 

  67. Hanada K, Nakai K, Tanaka H, Suzuki F, Kumada H, Ohno Y, Ozawa S, Ogata H (2012) Effect of nuclear receptor downregulation on hepatic expression of cytochrome P450 and transporters in chronic hepatitis C in association with fibrosis development. Drug Metab Pharmacokinet 27:301–306

    CAS  PubMed  Google Scholar 

  68. Hata S, Wang P, Eftychiou N, Ananthanarayanan M, Batta A, Salen G, Pang KS, Wolkoff AW (2003) Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am J Physiol Gastrointest Liver Physiol 285:G829–G839

    CAS  PubMed  Google Scholar 

  69. Hebert MF, Townsend RW, Austin S, Balan G, Blough DK, Buell D, Keirns J, Bekersky I (2005) Concomitant cyclosporine and micafungin pharmacokinetics in healthy volunteers. J Clin Pharmacol 45:954–960

    CAS  PubMed  Google Scholar 

  70. Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein posttranslational modification. J Biol Chem 287:4411–4418

    CAS  PubMed  Google Scholar 

  71. Heubi JE, Setchell KD, Bove KE (2007) Inborn errors of bile acid metabolism. Semin Liver Dis 27:282–294

    CAS  PubMed  Google Scholar 

  72. Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222

    CAS  PubMed  Google Scholar 

  73. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806

    CAS  PubMed  Google Scholar 

  74. Hoekstra LT, de Graaf W, Nibourg GA, Heger M, Bennink RJ, Stieger B, van Gulik TM (2013) Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 257:27–36

    PubMed  Google Scholar 

  75. Hofmann AF (2009) The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci 14:2584–2598

    CAS  Google Scholar 

  76. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483

    CAS  PubMed  Google Scholar 

  77. Hofmann AF, Molino G, Milanese M, Belforte G (1983) Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man. J Clin Invest 71:1003–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Hu NJ, Iwata S, Cameron AD, Drew D (2011) Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478:408–411

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ischiropoulos H (2009) Protein tyrosine nitration—an update. Arch Biochem Biophys 484:117–121

    CAS  PubMed  Google Scholar 

  80. Jacquemin E (2012) Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol 36(Suppl 1):S26–S35

    CAS  PubMed  Google Scholar 

  81. Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ (1994) Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci U S A 91:133–137

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Jones BA, Rao YP, Stravitz RT, Gores GJ (1997) Bile salt-induced apoptosis of hepatocytes involves activation of protein kinase C. Am J Physiol 272:G1109–G1115

    CAS  PubMed  Google Scholar 

  83. Keitel V, Burdelski M, Warskulat U, Kuhlkamp T, Keppler D, Haussinger D, Kubitz R (2005) Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41:1160–1172

    CAS  PubMed  Google Scholar 

  84. Kim RB, Leake B, Cvetkovic M, Roden MM, Nadeau J, Walubo A, Wilkinson GR (1999) Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. J Pharmacol Exp Ther 291:1204–1209

    CAS  PubMed  Google Scholar 

  85. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    CAS  PubMed  Google Scholar 

  86. Kolhatkar V, Polli JE (2012) Structural requirements of bile acid transporters: C-3 and C-7 modifications of steroidal hydroxyl groups. Eur J Pharm Sci 46:86–99

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kosters A, Karpen SJ (2008) Bile acid transporters in health and disease. Xenobiotica 38:1043–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Kouzuki H, Suzuki H, Stieger B, Meier PJ, Sugiyama Y (2000) Characterization of the transport properties of organic anion transporting polypeptide 1 (oatp1) and Na(+)/taurocholate cotransporting polypeptide (Ntcp): comparative studies on the inhibitory effect of their possible substrates in hepatocytes and cDNA-transfected COS-7 cells. J Pharmacol Exp Ther 292:505–511

    CAS  PubMed  Google Scholar 

  89. Kramer W (2011) Transporters, Trojan horses and therapeutics: suitability of bile acid and peptide transporters for drug delivery. Biol Chem 392:77–94

    CAS  PubMed  Google Scholar 

  90. Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit: I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40:1604–1617

    CAS  PubMed  Google Scholar 

  91. Kubitz R, Droge C, Stindt J, Weissenberger K, Haussinger D (2012) The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol 36:536–553

    CAS  PubMed  Google Scholar 

  92. Kuhlkamp T, Keitel V, Helmer A, Haussinger D, Kubitz R (2005) Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin–proteasome system. Biol Chem 386:1065–1074

    PubMed  Google Scholar 

  93. Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305

    CAS  PubMed  Google Scholar 

  94. Landmann L, Angermuller S, Rahner C, Stieger B (1998) Expression, distribution, and activity of Na+, K+-ATPase in normal and cholestatic rat liver. J Histochem Cytochem 46:405–410

    CAS  PubMed  Google Scholar 

  95. LaRusso NF, Hoffman NE, Hofmann AF, Korman MG (1975) Validity and sensitivity of an intravenous bile acid tolerance test in patients with liver disease. N Engl J Med 292:1209–1214

    CAS  PubMed  Google Scholar 

  96. Leonhardt M, Keiser M, Oswald S, Kuhn J, Jia J, Grube M, Kroemer HK, Siegmund W, Weitschies W (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38:1024–1028

    PubMed  Google Scholar 

  97. Leslie EM, Watkins PB, Kim RB, Brouwer KL (2007) Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther 321:1170–1178

    CAS  PubMed  Google Scholar 

  98. Leto D, Saltiel AR (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383–396

    CAS  PubMed  Google Scholar 

  99. Lewis MC, Brieaddy LE, Root C (1995) Effects of 2164U90 on ileal bile acid absorption and serum cholesterol in rats and mice. J Lipid Res 36:1098–1105

    CAS  PubMed  Google Scholar 

  100. Lionarons DA, Boyer JL, Cai SY (2012) Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2). J Lipid Res 53:1535–1542

    CAS  PubMed  Google Scholar 

  101. McConkey M, Gillin H, Webster CR, Anwer MS (2004) Cross-talk between protein kinases Czeta and B in cyclic AMP-mediated sodium taurocholate co-transporting polypeptide translocation in hepatocytes. J Biol Chem 279:20882–20888

    CAS  PubMed  Google Scholar 

  102. McRae MP, Lowe CM, Tian X, Bourdet DL, Ho RH, Leake BF, Kim RB, Brouwer KL, Kashuba AD (2006) Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther 318:1068–1075

    CAS  PubMed  Google Scholar 

  103. Meier A, Mehrle S, Weiss TS, Mier W, Urban S (2013) Myristoylated PreS1-domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes. Hepatology 58:31–42

    CAS  PubMed  Google Scholar 

  104. Meier Y, Pauli-Magnus C, Zanger UM, Klein K, Schaeffeler E, Nussler AK, Nussler N, Eichelbaum M, Meier PJ, Stieger B (2006) Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology 44:62–74

    CAS  PubMed  Google Scholar 

  105. Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661

    CAS  PubMed  Google Scholar 

  106. Miccio M, Orzes N, Lunazzi GC, Gazzin B, Corsi R, Tiribelli C (1989) Reversal of ethinylestradiol-induced cholestasis by epomediol in rat. The role of liver plasma-membrane fluidity. Biochem Pharmacol 38:3559–3563

    CAS  PubMed  Google Scholar 

  107. Milkiewicz P, Saksena S, Cardenas T, Mills CO, Elias E (2000) Plasma elimination of cholyl-lysyl-fluorescein (CLF): a pilot study in patients with liver cirrhosis. Liver 20:330–334

    CAS  PubMed  Google Scholar 

  108. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y (2006) Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 34:1575–1581

    CAS  PubMed  Google Scholar 

  109. Muhlfeld S, Domanova O, Berlage T, Stross C, Helmer A, Keitel V, Haussinger D, Kubitz R (2012) Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Hepatology 56:2387–2397

    PubMed  Google Scholar 

  110. Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS (1997) cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am J Physiol 273:G842–G848

    CAS  PubMed  Google Scholar 

  111. Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS (1998) Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic AMP. Hepatology 28:1629–1636

    Google Scholar 

  112. Mukhopadhayay S, Webster CRL, Anwer MS (1998) Role of protein phosphatase in cyclic AMP-mediated stimulation of hepatic Na+/taurocholate cotransport. J Biol Chem 273:30039–30045

    Google Scholar 

  113. Murray JW, Thosani AJ, Wang P, Wolkoff AW (2011) Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp. Am J Physiol Gastrointest Liver Physiol 301:G60–G68

    CAS  PubMed  Google Scholar 

  114. Nakai K, Tanaka H, Hanada K, Ogata H, Suzuki F, Kumada H, Miyajima A, Ishida S, Sunouchi M, Habano W, Kamikawa Y, Kubota K, Kita J, Ozawa S, Ohno Y (2008) Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients. Drug Metab Dispos 36:1786–1793

    CAS  PubMed  Google Scholar 

  115. Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370:361–371

    CAS  PubMed  Google Scholar 

  116. Niemi M, Pasanen MK, Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63:157–181

    CAS  PubMed  Google Scholar 

  117. Park SW, Schonhoff CM, Webster CR, Anwer MS (2012) Protein kinase Cdelta differentially regulates cAMP-dependent translocation of NTCP and MRP2 to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 303:G657–G665

    CAS  PubMed  Google Scholar 

  118. Paumgartner G, Vasella DL, Herz R, Reichen J, Preisig R (1979) Hepatic extraction of taurocholate and indocyanine green in patients with liver disease (author’s transl). Z Gastroenterol 17:753–761

    CAS  PubMed  Google Scholar 

  119. Pawloski JR, Hess DT, Stamler JS (2005) Impaired vasodilation by red blood cells in sickle cell disease. Proc Natl Acad Sci U S A 102:2531–2536

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Petersen J, Dandri M, Mier W, Lutgehetmann M, Volz T, von Weizsacker F, Haberkorn U, Fischer L, Pollok JM, Erbes B, Seitz S, Urban S (2008) Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol 26:335–341

    CAS  PubMed  Google Scholar 

  121. Platte HD, Honscha W, Schuh K, Petzinger E (1996) Functional characterization of the hepatic sodium-dependent taurocholate transporter stably transfected into an immortalized liver-derived cell line and V79 fibroblasts. Eur J Cell Biol 70:54–60

    CAS  PubMed  Google Scholar 

  122. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54:1263–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Potter GD (1998) Bile acid diarrhea. Dig Dis 16:118–124

    CAS  PubMed  Google Scholar 

  124. Prekeris R, Klumperman J, Scheller RH (2000) A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol Cell 6:1437–1448

    CAS  PubMed  Google Scholar 

  125. Que LG, Liu L, Yan Y, Whitehead GS, Gavett SH, Schwartz DA, Stamler JS (2005) Protection from experimental asthma by an endogenous bronchodilator. Science 308:1618–1621

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Reyland ME (2009) Protein kinase C isoforms: multi-functional regulators of cell life and death. Front Biosci 14:2386–2399

    CAS  Google Scholar 

  127. Reymann A, Braun W, Drobik C, Woermann C (1989) Stimulation of bile acid active transport related to increased mucosal cyclic AMP content in rat ileum in vitro. Biochim Biophys Acta 1011:158–164

    CAS  PubMed  Google Scholar 

  128. Russell DW (2009) Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 50(Suppl):S120–S125

    PubMed  Google Scholar 

  129. Rust C, Bauchmuller K, Fickert P, Fuchsbichler A, Beuers U (2005) Phosphatidylinositol 3-kinase-dependent signaling modulates taurochenodeoxycholic acid-induced liver injury and cholestasis in perfused rat livers. Am J Physiol Gastrointest Liver Physiol 289:G88–G94

    CAS  PubMed  Google Scholar 

  130. Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214

    PubMed  Google Scholar 

  131. Sarkar S, Bananis E, Nath S, Anwer MS, Wolkoff AW, Murray JW (2006) PKCzeta is required for microtubule-based motility of vesicles containing the ntcp transporter. Traffic 7:1078–1091

    CAS  PubMed  Google Scholar 

  132. Sarwar Z, Annaba F, Dwivedi A, Saksena S, Gill RK, Alrefai WA (2009) Modulation of ileal apical Na+-dependent bile acid transporter ASBT by protein kinase C. Am J Physiol Gastrointest Liver Physiol 297:G532–G538

    CAS  PubMed  Google Scholar 

  133. Schieck A, Schulze A, Gahler C, Muller T, Haberkorn U, Alexandrov A, Urban S, Mier W (2013) Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology 58:43–53

    CAS  PubMed  Google Scholar 

  134. Schonhoff CM, Gaston B, Mannick JB (2003) Nitrosylation of cytochrome c during apoptosis. J Biol Chem 278:18265–18270

    CAS  PubMed  Google Scholar 

  135. Schonhoff CM, Gillin H, Webster CR, Anwer MS (2008) Protein kinase Cdelta mediates cyclic adenosine monophosphate-stimulated translocation of sodium taurocholate cotransporting polypeptide and multidrug resistant associated protein 2 in rat hepatocytes. Hepatology 47:1309–1316

    CAS  PubMed  Google Scholar 

  136. Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevez AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB (2006) S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103:2404–2409

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Schonhoff CM, Ramasamy U, Anwer MS (2011) Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 300:G364–G370

    CAS  PubMed  Google Scholar 

  138. Schonhoff CM, Thankey K, Webster CR, Wakabayashi Y, Wolkoff AW, Anwer MS (2008) Rab4 facilitates cyclic adenosine monophosphate-stimulated bile acid uptake and Na(+)-taurocholate cotransporting polypeptide translocation. Hepatology 48:1665–1670

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Schonhoff CM, Webster CR, Anwer MS (2013) Taurolithocholate-induced MRP2 retrieval involves MARCKS phosphorylation by protein kinase C in HUH-NTCP cells. Hepatology 58:284–292

    CAS  PubMed  Google Scholar 

  140. Schonhoff CM, Yamazaki A, Hohenester S, Webster CR, Bouscarel B, Anwer MS (2009) PKC{epsilon}-dependent and -independent effects of taurolithocholate on PI3K/PKB pathway and taurocholate uptake in HuH-NTCP cell line. Am J Physiol Gastrointest Liver Physiol 297:G1259–G1267

    CAS  PubMed  Google Scholar 

  141. Schwenk M, Schwarz LR, Greim H (1977) Taurolithocholate inhibits taurocholate uptake by isolated hepatocytes at low concentrations. Naunyn Schmiedeberg’s Arch Pharmacol 298:175–179

    CAS  Google Scholar 

  142. Setchell KD, Heubi JE, Shah S, Lavine JE, Suskind D, Al-Edreesi M, Potter C, Russell DW, O’Connell NC, Wolfe B, Jha P, Zhang W, Bove KE, Knisely AS, Hofmann AF, Rosenthal P, Bull LN (2013) Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology 144:945–955

    CAS  PubMed  Google Scholar 

  143. Simren M, Bajor A, Gillberg PG, Rudling M, Abrahamsson H (2011) Randomised clinical trial: the ileal bile acid transporter inhibitor A3309 vs. placebo in patients with chronic idiopathic constipation—a double-blind study. Aliment Pharmacol Ther 34:41–50

    CAS  PubMed  Google Scholar 

  144. Song IS, Lee IK, Chung SJ, Kim SG, Lee MG, Shim CK (2002) Effect of nitric oxide on the sinusoidal uptake of organic cations and anions by isolated hepatocytes. Arch Pharm Res 25:984–988

    CAS  PubMed  Google Scholar 

  145. Stieger B (2011) The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 201:205–259

    CAS  PubMed  Google Scholar 

  146. Stieger B, Heger M, de Graaf W, Paumgartner G, van Gulik GT (2012) The emerging role of transport systems in liver function tests. Eur J Pharmacol 675:1–5

    CAS  PubMed  Google Scholar 

  147. Stieger B, Meier PJ (2011) Pharmacogenetics of drug transporters in the enterohepatic circulation. Pharmacogenomics 12:611–631

    CAS  PubMed  Google Scholar 

  148. Stravitz RT, Rao YP, Vlahcevic ZR, Gurley EC, Jarvis WD, Hylemon PB (1996) Hepatocellular protein kinase C activation by bile acids: implications for regulation of cholesterol 7 alpha-hydroxylase. Am J Physiol 271:G293–G303

    CAS  PubMed  Google Scholar 

  149. Stross C, Helmer A, Weissenberger K, Gorg B, Keitel V, Haussinger D, Kubitz R (2010) Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide. Am J Physiol Gastrointest Liver Physiol 299:G320–G328

    CAS  PubMed  Google Scholar 

  150. Sun AQ, Arrese MA, Zeng L, Swaby I, Zhou MM, Suchy FJ (2001) The rat liver Na(+)/bile acid cotransporter. Importance of the cytoplasmic tail to function and plasma membrane targeting. J Biol Chem 276:6825–6833

    CAS  PubMed  Google Scholar 

  151. Sun AQ, Salkar R, Sachchidanand XS, Zeng L, Zhou MM, Suchy FJ (2003) A 14-amino acid sequence with a beta-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J Biol Chem 278:4000–4009

    CAS  PubMed  Google Scholar 

  152. Takeyama Y, Kanegae K, Inomata S, Takata K, Tanaka T, Ueda S, Yokoyama K, Morihara D, Nishizawa S, Anan A, Irie M, Iwata K, Shakado S, Sohda T, Sakisaka S (2010) Sustained upregulation of sodium taurocholate cotransporting polypeptide and bile salt export pump and downregulation of cholesterol 7alpha-hydroxylase in the liver of patients with end-stage primary biliary cirrhosis. Med Mol Morphol 43:134–138

    CAS  PubMed  Google Scholar 

  153. Toker A (2000) Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol Pharmacol 57:652–658

    CAS  PubMed  Google Scholar 

  154. Umadevi R, Anwer MS, Schonhoff CM (2013) Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of aurocholate uptake. Am J Physiol Gastrointest Liver Physiol. doi:10.1152/ajpgi.00089.2013

  155. Utili R, Abernathy CO, Zimmerman HJ (1977) Inhibition of Na+, K+-adenosinetriphosphatase by endotoxin: a possible mechanism for endotoxin-induced cholestasis. J Infect Dis 136:583–587

    CAS  PubMed  Google Scholar 

  156. van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR, Elferink RP, Kenworthy KE, Schinkel AH (2010) Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest 120:2942–2952

    PubMed Central  PubMed  Google Scholar 

  157. Warner N, Locarnini S (2013) The new front-line in hepatitis B/D research: identification and blocking of a functional receptor. Hepatology 58:9–12

    CAS  PubMed  Google Scholar 

  158. Webster CRL, Anwer MS (1999) Role of the PI3K/PKB signaling pathway in cAMP-mediated translocation of rat liver Ntcp. Am J Physiol 277:G1165–G1172

    CAS  PubMed  Google Scholar 

  159. Webster CRL, Blanch C, Anwer MS (2002) Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP. Am J Physiol Gastrointest Liver Physiol 283:G44–G50

    CAS  PubMed  Google Scholar 

  160. Webster CRL, Blanch CJ, Philips J, Anwer MS (2000) Cell swelling-induced translocation of rat liver Na+/taurocholate cotransport polypeptide is mediated via the phosphoinositide 3-kinase signaling pathway. J Biol Chem 275:29754–29760

    CAS  PubMed  Google Scholar 

  161. Webster CR, Srinivasulu U, Ananthanarayanan M, Suchy FJ, Anwer MS (2002) Protein kinase B/Akt mediates cAMP- and cell swelling-stimulated Na+/taurocholate cotransport and Ntcp translocation. J Biol Chem 277:28578–28583

    CAS  PubMed  Google Scholar 

  162. Webster CR, Usechak P, Anwer MS (2002) cAMP inhibits bile acid-induced apoptosis by blocking caspase activation and cytochrome c release. Am J Physiol Gastrointest Liver Physiol 283:G727–G738

    CAS  PubMed  Google Scholar 

  163. Weinman SA (1997) Electrogenicity of Na(+)-coupled bile acid transporters. Yale J Biol Med 70:331–340

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Xia X, Francis H, Glaser S, Alpini G, Lesage G (2006) Bile acid interactions with cholangiocytes. World J Gastroenterol 12:3553–3563

    CAS  PubMed  Google Scholar 

  165. Xia X, Roundtree M, Merikhi A, Lu X, Shentu S, Lesage G (2004) Degradation of the apical sodium-dependent bile acid transporter by the ubiquitin–proteasome pathway in cholangiocytes. J Biol Chem 279:44931–44937

    CAS  PubMed  Google Scholar 

  166. Xiao F, McKeating JA, Baumert TF (2013) A bile acid transporter as a candidate receptor for hepatitis B and D virus entry. J Hepatol 58:1246–1248

    CAS  PubMed  Google Scholar 

  167. Yan H, Peng B, He W, Zhong G, Qi Y, Ren B, Gao Z, Jing Z, Song M, Xu G, Sui J, Li W (2013) Molecular determinants of hepatitis B and d virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol 87:7977–7991

    CAS  PubMed  Google Scholar 

  168. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1:1–28

    Google Scholar 

  169. Yanni SB, Augustijns PF, Benjamin DK Jr, Brouwer KL, Thakker DR, Annaert PP (2010) In vitro investigation of the hepatobiliary disposition mechanisms of the antifungal agent micafungin in humans and rats. Drug Metab Dispos 38:1848–1856

    CAS  PubMed  Google Scholar 

  170. Zahner D, Eckhardt U, Petzinger E (2003) Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem 270:1117–1127

    CAS  PubMed  Google Scholar 

  171. Zheng X, Ekins S, Raufman JP, Polli JE (2009) Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm 6:1591–1603

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Zollner G, Fickert P, Silbert D, Fuchsbichler A, Marschall HU, Zatloukal K, Denk H, Trauner M (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38:717–727

    CAS  PubMed  Google Scholar 

  173. Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33:633–646

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from NIH to MSA (DK033436 and DK090010) and from the Swiss National Science Foundation to BS (310030_144195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sawkat Anwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anwer, M.S., Stieger, B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch - Eur J Physiol 466, 77–89 (2014). https://doi.org/10.1007/s00424-013-1367-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1367-0

Keywords

Navigation