Skip to main content

Advertisement

Log in

Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Ca2+ plays a key role in intracellular signaling and controls various cellular processes such as proliferation, differentiation, cell growth, death, and apoptosis. Aberrant changes in intracellular Ca2+ levels can promote undesired cell proliferation and migration and are therefore associated with certain tumor types. Many research groups have suggested a potential role for voltage-gated Ca2+ channels in the regulation of tumor growth and progression, particularly T-type channels due to their unique biophysical properties. T-type channels are expressed in normal tissues throughout the body and in different types of tumors such as breast carcinoma, retinoblastoma, neuroblastoma, and glioma. It has been demonstrated that increased functional expression of the α1 subunit of T-type channels plays a role in the abnormal proliferation of glioblastoma cells. As such, siRNA-mediated knockdown of the expression of the α1 subunit of T-type channels decreases the proliferation of these cells. Moreover, pharmacological blockade of T-type channels significantly decreases tumor growth. In this review, we focus on the use of T-type channel blockers for the potential treatment of cancers, particularly highly proliferative tumors such as glioblastoma. We conclude that T-type channel blockers such as endostatin can serve as a potential therapeutic tool for tumors whose proliferation depends on increased T-type channel expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Belardetti F, Zamponi GW (2008) Linking calcium-channel isoforms to potential therapies. Curr Opin Investig Drugs 9:707–715

    CAS  PubMed  Google Scholar 

  2. Bertolesi GE, Shi C, Elbaum L, Jollimore C, Rozenberg G, Barnes S, Kelly ME (2002) The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol 62:210–219

    Article  CAS  PubMed  Google Scholar 

  3. Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cain SM, Snutch TP (2010) Contributions of T-type calcium channel isoforms to neuronal firing. Channels (Austin) 4:475–482

    Article  CAS  Google Scholar 

  5. Carbone E, Giancippoli A, Marcantoni A, Guido D, Carabelli V (2006) A new role for T-type channels in fast “low-threshold” exocytosis. Cell Calcium 40:147–154

    Article  CAS  PubMed  Google Scholar 

  6. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  7. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  PubMed  Google Scholar 

  8. Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80:1238–1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chemin J, Monteil A, Briquaire C, Richard S, Perez-Reyes E, Nargeot J, Lory P (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett 478:166–172

    Article  CAS  PubMed  Google Scholar 

  10. Chemin J, Monteil A, Dubel S, Nargeot J, Lory P (2001) The alpha1I T-type calcium channel exhibits faster gating properties when overexpressed in neuroblastoma/glioma NG 108-15 cells. Eur J Neurosci 14:1678–1686

    Article  CAS  PubMed  Google Scholar 

  11. Chemin J, Nargeot J, Lory P (2007) Chemical determinants involved in anandamide-induced inhibition of T-type calcium channels. J Biol Chem 282:2314–2323

    Article  CAS  PubMed  Google Scholar 

  12. Chemin J, Traboulsie A, Lory P (2006) Molecular pathways underlying the modulation of T-type calcium channels by neurotransmitters and hormones. Cell Calcium 40:121–134

    Article  CAS  PubMed  Google Scholar 

  13. Ciapa B, Pesando D, Wilding M, Whitaker M (1994) Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 368:875–878

    Article  CAS  PubMed  Google Scholar 

  14. Cribbs LL (2006) T-type Ca2+ channels in vascular smooth muscle: multiple functions. Cell Calcium 40:221–230

    Article  CAS  PubMed  Google Scholar 

  15. Cribbs L (2010) T-type calcium channel expression and function in the diseased heart. Channels (Austin) 4:447–452

    Article  CAS  Google Scholar 

  16. Garber SS, Hoshi T, Aldrich RW (1990) Interaction of forskolin with voltage-gated K + channels in PC12 cells. J Neurosci 10:3361–3368

    CAS  PubMed  Google Scholar 

  17. Giordanetto F, Knerr L, Wallberg A (2011) T-type calcium channels inhibitors: a patent review. Expert Opin Ther Patent 21:85–101

    Article  CAS  Google Scholar 

  18. Gray LS, Macdonald TL (2006) The pharmacology and regulation of T type calcium channels: new opportunities for unique therapeutics for cancer. Cell Calcium 40:115–120

    Article  CAS  PubMed  Google Scholar 

  19. Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, Harper J, Brooks G, Heady T, Macdonald TL (2004) The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells. Cell Calcium 36:489–497

    Article  CAS  PubMed  Google Scholar 

  20. Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res 60:1002–1008

    CAS  PubMed  Google Scholar 

  21. Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 309:193–199

    Article  CAS  PubMed  Google Scholar 

  22. Huang JB, Kindzelskii AL, Clark AJ, Petty HR (2004) Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res 64:2482–2489

    Article  CAS  PubMed  Google Scholar 

  23. Iftinca MC, Zamponi GW (2009) Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci 30:32–40

    Article  CAS  PubMed  Google Scholar 

  24. Kim YM, Hwang S, Pyun BJ, Kim TY, Lee ST, Gho YS, Kwon YG (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 277:27872–27879

    Article  CAS  PubMed  Google Scholar 

  25. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31:35–45

    Article  CAS  PubMed  Google Scholar 

  26. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  CAS  PubMed  Google Scholar 

  27. Lacinova L (2004) Pharmacology of recombinant low-voltage activated calcium channels. Curr Drug Targets CNS Neurol Disord 3:105–111

    Article  CAS  PubMed  Google Scholar 

  28. Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Glia 48:112–119

    Article  PubMed  Google Scholar 

  29. Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921

    CAS  PubMed  Google Scholar 

  30. Lee GL, Hait WN (1985) Inhibition of growth of C6 astrocytoma cells by inhibitors of calmodulin. Life Sci 36:347–354

    Article  CAS  PubMed  Google Scholar 

  31. Lee YS, Lee BH, Park SJ, Kang SB, Rhim H, Park JY, Lee JH, Jeong SW, Lee JY (2004) 3,4-Dihydroquinazoline derivatives as novel selective T-type Ca2+ channel blockers. Bioorg Med Chem Lett 14:3379–3384

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Xiong ZG (2011) Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 3:156–166

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Li W, Zhang SL, Wang N, Zhang BB, Li M (2011) Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest 29:339–346

    Article  CAS  PubMed  Google Scholar 

  34. Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40:135–146

    Article  CAS  PubMed  Google Scholar 

  35. Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D, Wu S (2008) T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium 43:49–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lu F, Chen H, Zhou C, Wu S (2005) Is there a role for T-type Ca2+ channel in glioma cell proliferation? Cell Calcium 38:593–595, author reply 597

    Article  CAS  PubMed  Google Scholar 

  37. Machaca K (2011) Ca(2+) signaling, genes and the cell cycle. Cell Calcium 49:323–330

    Article  CAS  PubMed  Google Scholar 

  38. Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N (2002) Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277:10824–10833

    Article  CAS  PubMed  Google Scholar 

  39. Marshall E (2002) Cancer therapy. Setbacks for endostatin. Science 295:2198–2199

    Article  CAS  PubMed  Google Scholar 

  40. McCalmont WF, Heady TN, Patterson JR, Lindenmuth MA, Haverstick DM, Gray LS, Macdonald TL (2004) Design, synthesis, and biological evaluation of novel T-Type calcium channel antagonists. Bioorg Med Chem Lett 14:3691–3695

    Article  CAS  PubMed  Google Scholar 

  41. McGivern JG (2006) Pharmacology and drug discovery for T-type calcium channels. CNS Neurol Disord Drug Targets 5:587–603

    Article  CAS  PubMed  Google Scholar 

  42. McRory JE, Santi CM, Hamming KS, Mezeyova J, Sutton KG, Baillie DL, Stea A, Snutch TP (2001) Molecular and functional characterization of a family of rat brain T-type calcium channels. J Biol Chem 276:3999–4011

    Article  CAS  PubMed  Google Scholar 

  43. Minor DL Jr, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4:459–474

    Google Scholar 

  44. Monteil A, Chemin J, Bourinet E, Mennessier G, Lory P, Nargeot J (2000) Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem 275:6090–6100

    Article  CAS  PubMed  Google Scholar 

  45. Monteil A, Chemin J, Leuranguer V, Altier C, Mennessier G, Bourinet E, Lory P, Nargeot J (2000) Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J Biol Chem 275:16530–16535

    Article  CAS  PubMed  Google Scholar 

  46. Monteith GR, Davis FM, Roberts-Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287:31666–31673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Murbartian J, Arias JM, Lee JH, Gomora JC, Perez-Reyes E (2002) Alternative splicing of the rat Ca(v)3.3 T-type calcium channel gene produces variants with distinct functional properties(1). FEBS Lett 528:272–278

    Article  CAS  PubMed  Google Scholar 

  48. Nilius B, Prenen J, Kamouchi M, Viana F, Voets T, Droogmans G (1997) Inhibition by mibefradil, a novel calcium channel antagonist, of Ca(2+)- and volume-activated Cl- channels in macrovascular endothelial cells. Br J Pharmacol 121:547–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37:105–119

    Article  CAS  PubMed  Google Scholar 

  50. Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259

    Article  CAS  PubMed  Google Scholar 

  51. Park SJ, Lee MJ, Rhim H, Kim Y, Lee JH, Chung BY, Lee JY (2006) Synthesis and SAR studies of a novel series of T-type calcium channel blockers. Bioorg Med Chem 14:3502–3511

    Article  CAS  PubMed  Google Scholar 

  52. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  53. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900

    Article  CAS  PubMed  Google Scholar 

  54. Perez-Reyes E, Lory P (2006) Molecular biology of T-type calcium channels. CNS Neurol Disord Drug Targets 5:605–609

    Article  CAS  PubMed  Google Scholar 

  55. Peroulis I, Jonas N, Saleh M (2002) Antiangiogenic activity of endostatin inhibits C6 glioma growth. Int J Cancer 97:839–845

    Article  CAS  PubMed  Google Scholar 

  56. Richard S, Neveu D, Carnac G, Bodin P, Travo P, Nargeot J (1992) Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes. Biochim Biophys Acta 1160:95–104

    Article  CAS  PubMed  Google Scholar 

  57. Rouzaire-Dubois B, Dubois JM (1998) K + channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol 510(Pt 1):93–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Santoni G, Santoni M, Nabissi M (2012) Functional role of T-type calcium channels in tumour growth and progression: prospective in cancer therapy. Br J Pharmacol 166:1244–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schmidt NO, Ziu M, Carrabba G, Giussani C, Bello L, Sun Y, Schmidt K, Albert M, Black PM, Carroll RS (2004) Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model. Clin Cancer Res 10:1255–1262

    Article  CAS  PubMed  Google Scholar 

  60. Schmitt R, Clozel JP, Iberg N, Buhler FR (1995) Mibefradil prevents neointima formation after vascular injury in rats. Possible role of the blockade of the T-type voltage-operated calcium channel. Arterioscler Thromb Vasc Biol 15:1161–1165

    Article  CAS  PubMed  Google Scholar 

  61. Singh A, Hildebrand ME, Garcia E, Snutch TP (2010) The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 160:1464–1475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Skovseth DK, Veuger MJ, Sorensen DR, De Angelis PM, Haraldsen G (2005) Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood 105:1044–1051

    Article  CAS  PubMed  Google Scholar 

  63. Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114

    Article  CAS  PubMed  Google Scholar 

  64. Talavera K, Staes M, Janssens A, Droogmans G, Nilius B (2004) Mechanism of arachidonic acid modulation of the T-type Ca2+ channel alpha1G. J Gen Physiol 124:225–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M (2008) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP (1999) Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumors. Cancer Res 59:4535–4541

    CAS  PubMed  Google Scholar 

  67. Trimarchi T, Pachuau J, Shepherd A, Dey D, Martin-Caraballo M (2009) CNTF-evoked activation of JAK and ERK mediates the functional expression of T-type Ca2+ channels in chicken nodose neurons. J Neurochem 108:246–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Turner RW, Anderson D, Zamponi GW (2011) Signaling complexes of voltage-gated calcium channels. Channels (Austin) 5:440–448

    Article  CAS  Google Scholar 

  69. Vassort G, Talavera K, Alvarez JL (2006) Role of T-type Ca2+ channels in the heart. Cell Calcium 40:205–220

    Article  CAS  PubMed  Google Scholar 

  70. Wang YQ, Brooks G, Zhu CB, Yuan WZ, Li YQ, Wu XS (2002) Functional analysis of the human T-type calcium channel alpha 1H subunit gene in cellular proliferation. Yi Chuan Xue Bao 29:659–665

    CAS  PubMed  Google Scholar 

  71. Wang Z, Estacion M, Mordan LJ (1993) Ca2+ influx via T-type channels modulates PDGF-induced replication of mouse fibroblasts. Am J Physiol 265:C1239–C1246

    CAS  PubMed  Google Scholar 

  72. Wang G, Lemos JR, Iadecola C (2004) Herbal alkaloid tetrandrine: from an ion channel blocker to inhibitor of tumor proliferation. Trends Pharmacol Sci 25:120–123

    Article  CAS  PubMed  Google Scholar 

  73. Wickstrom SA, Alitalo K, Keski-Oja J (2002) Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 62:5580–5589

    CAS  PubMed  Google Scholar 

  74. Wondergem R, Gong W, Monen SH, Dooley SN, Gonce JL, Conner TD, Houser M, Ecay TW, Ferslew KE (2001) Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J Physiol 532:661–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Xu XP, Best PM (1990) Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci U S A 87:4655–4659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Yang L, Lin Z, Lin J, Weng S, Huang Q, Zhang P, Fu J (2011) Antitumor effect of endostatin overexpressed in C6 glioma cells is associated with the down-regulation of VEGF. Int J Oncol 38:465–471

    CAS  PubMed  Google Scholar 

  77. Yoshida M, Nosaka K, Yasunaga J, Nishikata I, Morishita K, Matsuoka M (2004) Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells. Blood 103:2753–2760

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Jiang X, Snutch TP, Tao J (2013) Modulation of low-voltage-activated T-type Ca(2)(+) channels. Biochim Biophys Acta 1828:1550–1559

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, Tao J (2012) Inhibition of T-type Ca(2)(+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 166:1247–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhong X, Liu JR, Kyle JW, Hanck DA, Agnew WS (2006) A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 15:1497–1512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dongsheng Jiang from the University of Ulm for his constructive comment on the manuscript. The work was supported by the National Natural Science Foundation of China (30900437, 81171056, 81200852, 31271258, and 81371229), NSFC-CNRS (81311130114), Natural Science Funding of Jiangsu Province (BK2011293), Natural Science Funding for Colleges and Universities in Jiangsu Province (12KJB320010), Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry (to Jin Tao), Suzhou Science and Technology Development Plan (SYS201037 and SYS201102), Young Medical Talents Training Program Grant of Pudong Health Bureau of Shanghai (PWRq2012-08, to Hua Wang), and Dong-Wu Scholar Funding of Soochow University.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tao.

Additional information

Yuan Zhang, Hua Wang, and Zhiyuan Qian contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, H., Qian, Z. et al. Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin. Pflugers Arch - Eur J Physiol 466, 811–818 (2014). https://doi.org/10.1007/s00424-013-1427-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1427-5

Keywords

Navigation