Skip to main content
Log in

AVP dynamically increases paracellular Na+ permeability and transcellular NaCl transport in the medullary thick ascending limb of Henle’s loop

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The medullary thick ascending limb of Henle’s loop (mTAL) is crucial for urine-concentrating ability of the kidney. It is water tight and able to dilute the luminal fluid by active transcellular NaCl transport, fueling the counter current mechanism by increasing interstitial osmolality. While chloride is exclusively transported transcellularly, approx. 50% of sodium transport occurs via the paracellular route, driven by the lumen-positive transepithelial potential. Antidiuretic hormone (AVP) is known to increase active NaCl transport to support collecting duct water reabsorption. Here, we investigated the concomitant effects of AVP on the paracellular properties of mTAL. Freshly isolated mouse mTALs were perfused and electrophysiological transcellular and paracelluar properties were assessed in a paired fashion before and after AVP stimulation. In addition, the same parameters were measured in mice on a water-restricted (WR) or water-loaded (WL) diet for 5 days. Acute ex vivo stimulation as well as long-term in vivo water restriction increased equivalent short circuit current as a measure of active transcellular NaCl transport. Intriguingly, in both experimental approaches, this was accompanied by markedly increased paracellular Na+ selectivity. Thus, AVP is able to acutely regulate paracellular cation selectivity in parallel to transcellular NaCl transport, allowing balanced paracellular Na+ absorption under an increased transepithelial driving force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. American journal of physiology Renal physiology 301:F1143–F1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG (2002) Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32:435–443

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bleich M, Schlatter E, Greger R (1990) The luminal K+ channel of the thick ascending limb of Henle’s loop. Pflugers Archiv : European journal of physiology 415:449–460

    Article  CAS  PubMed  Google Scholar 

  4. Borschewski A, Himmerkus N, Boldt C, Blankenstein KI, McCormick JA, Lazelle R, Willnow TE, Jankowski V, Plain A, Bleich M, Ellison DH, Bachmann S, and Mutig K 2015 Calcineurin and sorting-related receptor with A-type repeats interact to regulate the renal Na+-K+-2Cl- cotransporter. J Am Soc Nephrol : JASN

  5. Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C, Meij IC, Bachmann S, Bleich M, Willnow TE, Muller D (2012) Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A 109:14241–14246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caceres PS, Ares GR, Ortiz PA (2009) cAMP stimulates apical exocytosis of the renal Na(+)-K(+)-2Cl(−) cotransporter NKCC2 in the thick ascending limb: role of protein kinase a. J Biol Chem 284:24965–24971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chabardes D, Gagnan-Brunette M, Imbert-Teboul M, Gontcharevskaia O, Montegut M, Clique A, Morel F (1980) Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J Clin Invest 65:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Rouffignac C, Di Stefano A, Wittner M, Roinel N, Elalouf JM (1991) Consequences of differential effects of ADH and other peptide hormones on thick ascending limb of mammalian kidney. Am J Phys 260:R1023–R1035

    CAS  Google Scholar 

  9. Di Stefano A, Roinel N, de RC, Wittner M (1993) Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle’s loop of the mouse is a voltage-dependent process 10 119. Ren Physiol Biochem 16:157–166

    CAS  PubMed  Google Scholar 

  10. Di Stefano A, Wittner M, Nitschke R, Braitsch R, Greger R, Bailly C, Amiel C, Roinel N, de RC (1990) Effects of parathyroid hormone and calcitonin on Na+, Cl-, K+, Mg2+ and Ca2+ transport in cortical and medullary thick ascending limbs of mouse kidney 16 120. Pflugers Arch 417:161–167

    Article  CAS  PubMed  Google Scholar 

  11. Dietrich A, Mathia S, Kaminski H, Mutig K, Rosenberger C, Mrowka R, Bachmann S, Paliege A (2013) Chronic activation of vasopressin V2 receptor signalling lowers renal medullary oxygen levels in rats. Acta Physiol (Oxf) 207:721–731

    Article  CAS  Google Scholar 

  12. Fenton RA, Brond L, Nielsen S, Praetorius J (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. American journal of physiology Renal physiology 293:F748–F760

    Article  CAS  PubMed  Google Scholar 

  13. Findley MK, Koval M (2009) Regulation and roles for claudin-family tight junction proteins. IUBMB life 61:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao M, Li W, Wang H, Wang G (2013) The distinct expression patterns of claudin-10, −14, −17 and E-cadherin between adjacent non-neoplastic tissues and gastric cancer tissues. Diagn Pathol 8:205

    Article  PubMed  PubMed Central  Google Scholar 

  15. Giebisch G (2001) Renal potassium channels: function, regulation, and structure. Kidney Int 60:436–445

    Article  CAS  PubMed  Google Scholar 

  16. Gimenez I, Forbush B (2003) Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 278:26946–26951

    Article  CAS  PubMed  Google Scholar 

  17. Gong Y, Himmerkus N, Plain A, Bleich M, and Hou J 2014 Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol : JASN

  18. Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J (2012) Claudin-14 regulates renal Ca (+) (+) transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31:1999–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778:729–756

    Article  CAS  PubMed  Google Scholar 

  20. Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Archiv : European journal of physiology 390:30–37

    Article  CAS  PubMed  Google Scholar 

  21. Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Archiv : European journal of physiology 392:92–94

    Article  CAS  PubMed  Google Scholar 

  22. Greger R, Schlatter E, Lang F (1983) Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Archiv : European journal of physiology 396:308–314

    Article  CAS  PubMed  Google Scholar 

  23. Gunzel D, Fromm M (2012) Claudins and other tight junction proteins. Comprehensive Physiology 2:1819–1852

    PubMed  Google Scholar 

  24. Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gunzel D, Yu AS (2009) Function and regulation of claudins in the thick ascending limb of Henle. Pflugers Archiv : European journal of physiology 458:77–88

    Article  PubMed  Google Scholar 

  26. Hall DA, Varney DM (1980) Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop. J Clin Invest 66:792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hebert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Phys 246:F745–F756

    CAS  Google Scholar 

  28. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106:15350–15355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex 1. JClinInvest 118:619–628

    CAS  Google Scholar 

  30. Huang GW, Ding X, Chen SL, Zeng L (2011) Expression of claudin 10 protein in hepatocellular carcinoma: impact on survival. J Cancer Res Clin Oncol 137:1213–1218

    Article  CAS  PubMed  Google Scholar 

  31. Ikari A, Kinjo K, Atomi K, Sasaki Y, Yamazaki Y, Sugatani J (2010) Extracellular Mg(2+) regulates the tight junctional localization of claudin-16 mediated by ERK-dependent phosphorylation. Biochim Biophys Acta 1798:415–421

    Article  CAS  PubMed  Google Scholar 

  32. Ikari A, Matsumoto S, Harada H, Takagi K, Hayashi H, Suzuki Y, Degawa M, Miwa M (2006) Phosphorylation of paracellin-1 at Ser217 by protein kinase a is essential for localization in tight junctions. J Cell Sci 119:1781–1789

    Article  CAS  PubMed  Google Scholar 

  33. Imbert M, Chabardes D, Montegut M, Clique A, Morel F (1975) Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pflugers Archiv : European journal of physiology 357:173–186

    Article  CAS  PubMed  Google Scholar 

  34. Kahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP (2004) WNK kinases: molecular regulators of integrated epithelial ion transport. Curr Opin Nephrol Hypertens 13:557–562

    Article  CAS  PubMed  Google Scholar 

  35. Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA (1999) Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Phys 276:F96–F103

    CAS  Google Scholar 

  36. Knepper MA, Kwon TH, Nielsen S (2015) Molecular physiology of water balance. N Engl J Med 372:1349–1358

    Article  CAS  PubMed  Google Scholar 

  37. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement 6. AmJHumGenet 79:949–957

    CAS  Google Scholar 

  38. Laroche-Joubert N, Marsy S, Luriau S, Imbert-Teboul M, Doucet A (2003) Mechanism of activation of ERK and H-K-ATPase by isoproterenol in rat cortical collecting duct 1 27. AmJPhysiol Renal Physiol 284:F948–F954

    Article  CAS  Google Scholar 

  39. Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204:3067–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsubara M (2004) Renal sodium handling for body fluid maintenance and blood pressure regulation. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 124:301–309

    Article  CAS  PubMed  Google Scholar 

  41. Milatz S, Himmerkus N, Wulfmeyer VC, Drewell H, Mutig K, Hou J, Breiderhoff T, Muller D, Fromm M, Bleich M, Gunzel D (2016) Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. PNAS, in press

  42. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mutig K, Paliege A, Kahl T, Jons T, Muller-Esterl W, Bachmann S (2007) Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. American journal of physiology Renal physiology 293:F1166–F1177

    Article  CAS  PubMed  Google Scholar 

  44. Ohta A, Yang SS, Rai T, Chiga M, Sasaki S, Uchida S (2006) Overexpression of human WNK1 increases paracellular chloride permeability and phosphorylation of claudin-4 in MDCKII cells. Biochem Biophys Res Commun 349:804–808

    Article  CAS  PubMed  Google Scholar 

  45. Park EJ, Kwon TH (2015) A minireview on vasopressin-regulated aquaporin-2 in kidney collecting duct cells. Electrolyte & blood pressure : E & BP 13:1–6

    Article  Google Scholar 

  46. Plain A, Wulfmeyer VC, Milatz S, Klietz A, Hou J, Bleich M, Himmerkus N (2016) Corticomedullary difference in the effects of dietary Ca(2+) on tight junction properties in thick ascending limbs of Henle’s loop. Pflugers Archiv : European journal of physiology 468:293–303

    Article  CAS  PubMed  Google Scholar 

  47. Richardson C, Sakamoto K, de los Heros P, Deak M, Campbell DG, Prescott AR, Alessi DR (2011) Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J Cell Sci 124:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V (2013) Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 182:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP (2007) WNK4 regulates activity of the epithelial Na + channel in vitro and in vivo. Proc Natl Acad Sci U S A 104:4020–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruggles BT, Murayama N, Werness JL, Gapstur SM, Bentley MD, Dousa TP (1985) The vasopressin-sensitive adenylate cyclase in collecting tubules and in thick ascending limb of Henle’s loop of human and canine kidney. J Clin Endocrinol Metab 60:914–921

    Article  CAS  PubMed  Google Scholar 

  51. Schumann S, Buck VU, Classen-Linke I, Wennemuth G, Grummer R (2015) Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human. Histochem Cell Biol 144:571–585

    Article  CAS  PubMed  Google Scholar 

  52. Weber S, Hoffmann K, Jeck N, Saar K, Boeswald M, Kuwertz-Broeking E, Meij II, Knoers NV, Cochat P, Sulakova T, Bonzel KE, Soergel M, Manz F, Schaerer K, Seyberth HW, Reis A, Konrad M (2000) Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis maps to chromosome 3q27 and is associated with mutations in the PCLN-1 gene 5 21. EurJHumGenet 8:414–422

    CAS  Google Scholar 

  53. Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K, Sommer K, Gunzel D, Querfeld U, Meij IC, Shan Q, Bleich M, Willnow TE, Muller D (2010) Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. American journal of physiology Renal physiology 298:F1152–F1161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Animal Care of the Christian-Albrechts-Universität Kiel (CAU) for their excellent support in breeding and animal handling. We thank T. Stegmann and R. Lingg for high-quality technical assistance.

Grants

The project was kindly supported by the Christian-Albrechts-Universität zu Kiel (CAU) funding to N.H., M.B., S.S., and A.P. and by the Danish Medical Research Foundation (0602-02390B) to J.L. and R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Himmerkus.

Additional information

Nina Himmerkus and Allein Plain contributed equally. Jens Leipziger and Markus Bleich contributed equally.

This article is published as part of the Special Issue on “Physiology, pathophysiology and clinical impact of claudins.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himmerkus, N., Plain, A., Marques, R.D. et al. AVP dynamically increases paracellular Na+ permeability and transcellular NaCl transport in the medullary thick ascending limb of Henle’s loop. Pflugers Arch - Eur J Physiol 469, 149–158 (2017). https://doi.org/10.1007/s00424-016-1915-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1915-5

Keywords

Navigation