Skip to main content

Advertisement

Log in

An enhancer-trap LacZ transgene reveals a distinct expression pattern of Kinesin family 26B in mouse embryos

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The enhancer-trap system is a useful tool to uncover genes that exhibit a unique tissue-specific expression. Here, we established a transgenic mouse line in which the reporter gene LacZ was specifically expressed in the developing limbs and face in the embryo. To identify the endogenous genes that are controlled by the limb- and face-specific enhancers, we pinpointed the integration site of the transgene, and analyzed the expression pattern of the genes that were located near the integration site. We found that the gene encoding KIF26B, a member of the kinesin superfamily, was preferentially expressed in the limb buds, face, and somite derivatives. Moreover, while a 7.5-kb mRNA was the major Kif26B transcript in the embryo, it was absent in many adult tissues. These results imply that KIF26B may play a role in embryogenesis, specifically in the development of limbs, face, and somites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F
Fig. 2A, B
Fig. 3A–J
Fig. 4A, B
Fig. 5

References

  • Alarcón VB, Marikawa Y (2003) Deviation of the blastocyst axis from the first cleavage plane does not affect the quality of mouse postimplantation development. Biol Reprod 69:1208–1212

    PubMed  Google Scholar 

  • Aoto K, Nishimura T, Eto K, Motoyama J (2002) Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol 251:320–332

    Article  CAS  PubMed  Google Scholar 

  • Baskar JF, Smith PP, Ciment GS, Hoffmann S, Tucker C, Tenney DJ, Colberg-Poley AM, Nelson JA, Ghazal P (1996) Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J Virol 70:3215–3226

    CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Harris MP, Simandl BK, Li Y, Beachy PA, Fallon JF (2001) Manifestation of the limb prepattern: limb development in the absence of Sonic hedgehog function. Dev Biol 236:421–435

    Article  CAS  PubMed  Google Scholar 

  • Gibson-Brown JJ, Agulnik SI, Chapman DL, Alexiou M, Garvey N, Silver LM, Papaioannou VE (1996) Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech Dev 56:93–101

    PubMed  Google Scholar 

  • Guigo R, Dermitzakis ET, Agarwal P, Ponting CP, Parra G, Reymond A, Abril JF, Keibler E, Lyle R, Ucla C, Antonarakis SE, Brent MR (2003) Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes. Proc Natl Acad Sci USA 100:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 373

  • Hu D, Helms JA (1999) The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 126:4873–4884

    CAS  PubMed  Google Scholar 

  • Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, Arakawa T, Hara A, Fukunishi Y, Konno H, et al (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409:685–690

    Article  PubMed  Google Scholar 

  • Kothary R, Barton SC, Franz T, Norris ML, Hettle S, Surani MA (1991) Unusual cell specific expression of a major human cytomegalovirus immediate early gene promoter-lacZ hybrid gene in transgenic mouse embryos. Mech Dev 35:25–31

    Article  CAS  PubMed  Google Scholar 

  • Kruger M, Mennerich D, Fees S, Schafer R, Mundlos S, Braun T (2001) Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development 128:743–752

    CAS  PubMed  Google Scholar 

  • Kuratani S, Martin JF, Wawersik S, Lilly B, Eichele G, Olson EN (1994) The expression pattern of the chick homeobox gene gMHox suggests a role in patterning of the limbs and face and in compartmentalization of somites. Dev Biol 161:357–369

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Lu MF, Cheng HT, Lacy AR, Kern MJ, Argao EA, Potter SS, Olson EN, Martin JF (1999) Paired-related homeobox genes cooperate in handplate and hindlimb zeugopod morphogenesis. Dev Biol 205:145–157

    Article  CAS  PubMed  Google Scholar 

  • Mahmood R, Bresnick J, Hornbruch A, Mahony C, Morton N, Colquhoun K, Martin P, Lumsden A, Dickson C, Mason I (1995) A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr Biol 5:797–806

    CAS  PubMed  Google Scholar 

  • McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, Sekhon M, Wylie K, Mardis ER, Wilson RK, et al (2001) A physical map of the human genome. Nature 409:934–941

    PubMed  Google Scholar 

  • Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98:7004–7011

    Article  CAS  PubMed  Google Scholar 

  • Nybakken K, Perrimon N (2002) Hedgehog signal transduction: recent findings. Curr Opin Genet Dev 12:503–511

    Article  CAS  PubMed  Google Scholar 

  • O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127

    CAS  PubMed  Google Scholar 

  • Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R (1998) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284:1180–1183

    Article  Google Scholar 

  • Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    CAS  PubMed  Google Scholar 

  • Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Therond PP (1997) Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein Costal2. Cell 90:225–234

    CAS  PubMed  Google Scholar 

  • Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua-Belmonte JC (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398:814–818

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 8.84

    Google Scholar 

  • Sisson JC, Ho KS, Suyama K, Scott MP (1997) Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90:235–245

    CAS  PubMed  Google Scholar 

  • Stanford WL, Cohn JB, Cordes SP (2001) Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2:756–768

    Article  CAS  PubMed  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    CAS  PubMed  Google Scholar 

  • von Melchner H, Reddy S, Ruley HE (1990) Isolation of cellular promoters by using a retrovirus promoter trap. Proc Natl Acad Sci USA 87:3733–3737

    PubMed  Google Scholar 

  • Wang G, Amanai K, Wang B, Jiang J (2000) Interactions with Costal2 and Suppressor of fused regulate nuclear translocation and activity of Cubitus interruptus. Genes Dev 14:2893-2905

    Article  CAS  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Ainscough R, Alexandersson M, An P, Antonarakis SE, et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  Google Scholar 

  • Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225:361–373

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We give special thanks to S. Lozanoff and M. Kuroyama for helping us with the Celera Genome Database. We are grateful to the staff of the University of Hawaii Laboratory Animal Service and Molecular Biology Core Facility and the members of the Institute for Biogenesis Research for their support. We thank former students, Jessica Hui and James Howard, who participated in the early stage of this project. This work was funded by the Victoria S. and Bradley L. Geist Foundation (20030540) to V.B.A., and the Harold K.L. Castle Foundation and National Institute of Health (HD040208) to Y.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Marikawa.

Additional information

Edited by R.P. Elinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marikawa, Y., Fujita, T.C. & Alarcón, V.B. An enhancer-trap LacZ transgene reveals a distinct expression pattern of Kinesin family 26B in mouse embryos. Dev Genes Evol 214, 64–71 (2004). https://doi.org/10.1007/s00427-003-0377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-003-0377-x

Keywords

Navigation