Skip to main content
Erschienen in: Brain Structure and Function 1/2006

01.12.2006 | Review

Regulation of scapula development

verfasst von: Ruijin Huang, Bodo Christ, Ketan Patel

Erschienen in: Brain Structure and Function | Sonderheft 1/2006

Einloggen, um Zugang zu erhalten

Abstract

The scapula is a component of the shoulder girdle. Its structure has changed greatly during evolution. For example, in humans it is a large quite flat triangular bone whereas in chicks it is a long blade like structure. In this review we describe the mechanisms that control the formation of the scapula. To assimilate our understanding regarding the development of the scapula blade we start by addressing the issue concerning the origin of the scapula. Experiments using somite extirpation, chick-quail cell marking system and genetic cell labelling techniques in a variety of species have suggested that the scapula had its origin in the somites. For example we have shown in the chick that the scapula blade originates from the somite, while the cranial part, which articulates with the upper limb, is derived from the somatopleure of the forelimb field. In the second and third part of the review we discuss the compartmental origin of this bone and the signalling molecules that control the scapula development. It is very interesting that the scapula blade originates from the dorsal compartment, dermomyotome, which has been previously been associated as a source of muscle and dermis, but not of cartilage. Thus, the development of the scapula blade can be considered a case of dermomyotomal chondrogenesis. Our results show that the dermomyotomal chondrogenesis differ from the sclerotomal chondrogenesis. Firstly, the scapula precursors are located in the hypaxial domain of the dermomyotome, from which the hypaxial muscles are derived. The fate of the scapula precursors, like the hypaxial muscle, is controlled by ectoderm-derived signals and BMPs from the lateral plate mesoderm. Ectoderm ablation and inhibition of BMP activity interfers the scapula-specific Pax1 expression and scapula blade formation. However, only somite cells in the cervicothoracic transition region appear to be committed to form scapula. This indicates that the intrinsic segment specific information determines the scapula forming competence of the somite cells. Taken together, we conclude that the scapula forming cells located within the hypaxial somitic domain require BMP signals derived from the somatopleure and as yet unidentified signals from ectoderm for activation of their coded intrinsic segment specific chondrogenic programme. In the last part we discuss the new data that provides evidence that neural crest contributes for the development of the scapula.
Literatur
Zurück zum Zitat Balling R, Deutsch U, Gruss P (1988) Undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell 55:531–535PubMedCrossRef Balling R, Deutsch U, Gruss P (1988) Undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell 55:531–535PubMedCrossRef
Zurück zum Zitat Burke AC (1991a) Proximal elements in the vertebrate limb: evolutionary and developmental origin of the pectorial girdle. Plenum, New York Burke AC (1991a) Proximal elements in the vertebrate limb: evolutionary and developmental origin of the pectorial girdle. Plenum, New York
Zurück zum Zitat Burke AC (1991b) The development and evolution of the turtle body plan: inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627 Burke AC (1991b) The development and evolution of the turtle body plan: inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627
Zurück zum Zitat Chevallier A, Kieny M, Mauger A (1977) Limb–somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258PubMed Chevallier A, Kieny M, Mauger A (1977) Limb–somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258PubMed
Zurück zum Zitat Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413PubMedCrossRef Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413PubMedCrossRef
Zurück zum Zitat Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396CrossRef Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396CrossRef
Zurück zum Zitat Christ B, Jacob HJ, Jacob M (1974) Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 30:1446–1449PubMedCrossRef Christ B, Jacob HJ, Jacob M (1974) Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 30:1446–1449PubMedCrossRef
Zurück zum Zitat Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202:179–194CrossRef Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202:179–194CrossRef
Zurück zum Zitat Dietrich S, Schubert FR, Lumsden A (1997) Control of dorsoventral pattern in the chick paraxial mesoderm. Development 124:3895–3908PubMed Dietrich S, Schubert FR, Lumsden A (1997) Control of dorsoventral pattern in the chick paraxial mesoderm. Development 124:3895–3908PubMed
Zurück zum Zitat Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125:2235–2249PubMed Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125:2235–2249PubMed
Zurück zum Zitat Ehehalt F, Wang B, Christ B, Patel K, Huang R (2004) Intrinsic cartilage-forming potential of dermomyotomal cells requires ectodermal signals for the development of the scapula blade. Anat Embryol (Berl) 208:431–437 Ehehalt F, Wang B, Christ B, Patel K, Huang R (2004) Intrinsic cartilage-forming potential of dermomyotomal cells requires ectodermal signals for the development of the scapula blade. Anat Embryol (Berl) 208:431–437
Zurück zum Zitat Fomenou MD, Scaal M, Stockdale FE, Christ B, Huang R (2005) Cells of all somitic compartments are determined with respect to segmental identity. Dev Dyn 233:1386–1393PubMedCrossRef Fomenou MD, Scaal M, Stockdale FE, Christ B, Huang R (2005) Cells of all somitic compartments are determined with respect to segmental identity. Dev Dyn 233:1386–1393PubMedCrossRef
Zurück zum Zitat Geetha-Loganathan P, Nimmagadda S, Prols F, Patel K, Scaal M, Huang R, Christ B (2005) Ectodermal Wnt-6 promotes Myf5–dependent avian limb myogenesis. Dev Biol 288:221–233PubMedCrossRef Geetha-Loganathan P, Nimmagadda S, Prols F, Patel K, Scaal M, Huang R, Christ B (2005) Ectodermal Wnt-6 promotes Myf5–dependent avian limb myogenesis. Dev Biol 288:221–233PubMedCrossRef
Zurück zum Zitat Geetha-Loganathan P, Nimmagadda S, Huang R, Scaal M, Christ B (2006a) Role of Wnt-6 in limb myogenesis. Anat Embryol (Berl) 211:183–188CrossRef Geetha-Loganathan P, Nimmagadda S, Huang R, Scaal M, Christ B (2006a) Role of Wnt-6 in limb myogenesis. Anat Embryol (Berl) 211:183–188CrossRef
Zurück zum Zitat Geetha-Loganathan P, Nimmagadda S, Huang R, Christ B, Scaal M (2006b) Regulation of ectodermal Wnt6 expression by the neural tube is transduced by dermomyotomal Wnt11: a mechanism of dermomyotomal lip sustainment. Development 133:2897–2904PubMedCrossRef Geetha-Loganathan P, Nimmagadda S, Huang R, Christ B, Scaal M (2006b) Regulation of ectodermal Wnt6 expression by the neural tube is transduced by dermomyotomal Wnt11: a mechanism of dermomyotomal lip sustainment. Development 133:2897–2904PubMedCrossRef
Zurück zum Zitat Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B (2000a) Sclerotomal origin of the ribs. Development 127:527–532PubMed Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B (2000a) Sclerotomal origin of the ribs. Development 127:527–532PubMed
Zurück zum Zitat Huang R, Zhi Q, Patel K, Wilting J, Christ B (2000b) Dual origin and segmental organisation of the avian scapula. Development 127:3789–3794PubMed Huang R, Zhi Q, Patel K, Wilting J, Christ B (2000b) Dual origin and segmental organisation of the avian scapula. Development 127:3789–3794PubMed
Zurück zum Zitat Hui CC, Joyner AL (1993) A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3:241–246PubMedCrossRef Hui CC, Joyner AL (1993) A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3:241–246PubMedCrossRef
Zurück zum Zitat Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104PubMedCrossRef Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104PubMedCrossRef
Zurück zum Zitat Kuijper S, Beverdam A, Kroon C, Brouwer A, Candille S, Barsh G, Meijlink F (2005) Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development 132:1601–1610PubMedCrossRef Kuijper S, Beverdam A, Kroon C, Brouwer A, Candille S, Barsh G, Meijlink F (2005) Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development 132:1601–1610PubMedCrossRef
Zurück zum Zitat Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355PubMedCrossRef Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355PubMedCrossRef
Zurück zum Zitat Moeller C, Swindell EC, Kispert A, Eichele G (2003) Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Development 130:5103–5111PubMedCrossRef Moeller C, Swindell EC, Kispert A, Eichele G (2003) Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Development 130:5103–5111PubMedCrossRef
Zurück zum Zitat Otto A, Schmidt C, Patel K (2006) Pax3 and Pax7 expression and regulation in the avian embryo. Anat Embryol (Berl) 211:293–310CrossRef Otto A, Schmidt C, Patel K (2006) Pax3 and Pax7 expression and regulation in the avian embryo. Anat Embryol (Berl) 211:293–310CrossRef
Zurück zum Zitat Pourquie O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Breant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84:461–471PubMedCrossRef Pourquie O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Breant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84:461–471PubMedCrossRef
Zurück zum Zitat Prols F, Ehehalt F, Rodriguez-Niedenfuhr M, He L, Huang R, Christ B (2004) The role of Emx2 during scapula formation. Dev Biol 275:315–324PubMedCrossRef Prols F, Ehehalt F, Rodriguez-Niedenfuhr M, He L, Huang R, Christ B (2004) The role of Emx2 during scapula formation. Dev Biol 275:315–324PubMedCrossRef
Zurück zum Zitat Schmidt C, Christ B, Patel K, Brand-Saberi B (1998) Experimental induction of BMP-4 expression leads to apoptosis in the paraxial and lateral plate mesoderm. Dev Biol 202:253–263PubMedCrossRef Schmidt C, Christ B, Patel K, Brand-Saberi B (1998) Experimental induction of BMP-4 expression leads to apoptosis in the paraxial and lateral plate mesoderm. Dev Biol 202:253–263PubMedCrossRef
Zurück zum Zitat Schmidt C, Christ B, Maden M, Brand-Saberi B, Patel K (2001) Regulation of Epha4 expression in paraxial and lateral plate mesoderm by ectoderm-derived signals. Dev Dyn 220:377–386PubMedCrossRef Schmidt C, Christ B, Maden M, Brand-Saberi B, Patel K (2001) Regulation of Epha4 expression in paraxial and lateral plate mesoderm by ectoderm-derived signals. Dev Dyn 220:377–386PubMedCrossRef
Zurück zum Zitat Schmidt C, Stoeckelhuber M, McKinnell I, Putz R, Christ B, Patel K (2004) Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation. Dev Biol 271:198–209PubMedCrossRef Schmidt C, Stoeckelhuber M, McKinnell I, Putz R, Christ B, Patel K (2004) Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation. Dev Biol 271:198–209PubMedCrossRef
Zurück zum Zitat Schoenwolf GC, Garcia-Martinez V, Dias MS (1992) Mesoderm movement and fate during avian gastrulation and neurulation. Dev Dyn 193:235–248PubMed Schoenwolf GC, Garcia-Martinez V, Dias MS (1992) Mesoderm movement and fate during avian gastrulation and neurulation. Dev Dyn 193:235–248PubMed
Zurück zum Zitat Selleck MA, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 112:15–26 Selleck MA, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 112:15–26
Zurück zum Zitat Singh MK, Petry M, Haenig B, Lescher B, Leitges M, Kispert A (2005) The T-box transcription factor Tbx15 is required for skeletal development. Mech Dev 122:131–144PubMedCrossRef Singh MK, Petry M, Haenig B, Lescher B, Leitges M, Kispert A (2005) The T-box transcription factor Tbx15 is required for skeletal development. Mech Dev 122:131–144PubMedCrossRef
Zurück zum Zitat Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson EN (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 185:29–43CrossRef Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson EN (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 185:29–43CrossRef
Zurück zum Zitat Teillet M, Watanabe Y, Jeffs P, Duprez D, Lapointe F, Le Douarin NM (1998) Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 125:2019–2030PubMed Teillet M, Watanabe Y, Jeffs P, Duprez D, Lapointe F, Le Douarin NM (1998) Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 125:2019–2030PubMed
Zurück zum Zitat Wang B, He L, Ehehalt F, Geetha-Loganathan P, Nimmagadda S, Christ B, Scaal M, Huang R (2005) The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 287:11–18PubMedCrossRef Wang B, He L, Ehehalt F, Geetha-Loganathan P, Nimmagadda S, Christ B, Scaal M, Huang R (2005) The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 287:11–18PubMedCrossRef
Metadaten
Titel
Regulation of scapula development
verfasst von
Ruijin Huang
Bodo Christ
Ketan Patel
Publikationsdatum
01.12.2006
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe Sonderheft 1/2006
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-006-0126-9

Weitere Artikel der Sonderheft 1/2006

Brain Structure and Function 1/2006 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.