Skip to main content
Log in

Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The basal forebrain (BF) contains cholinergic as well as different types of non-cholinergic corticopetal neurons and interneurons, including neuropeptide Y (NPY) containing cells. BF corticopetal neurons constitute an extrathalamic route to the cortex and their activity is associated with an increase in cortical release of the neurotransmitter acetylcholine, concomitant with low voltage fast cortical EEG activity. It has been shown in previous studies (Duque et al. in J Neurophysiol 84:1627–1635, 2000) that in anesthetized rats BF cholinergic neurons fire mostly during low voltage fast cortical EEG epochs, while increased NPY neuronal firing is accompanied by cortical slow waves. In this paper, electrophysiologically and neurochemically characterized cholinergic and NPY-containing neurons were 3D reconstructed from serial sections and morphometrically analyzed. Cholinergic and NPY-containing neurons, although having roughly the same dendritic surface areas and lengths, were found to differ in dendritic thickness and branching structure. They also have distinct patterns of dendritic endings. The subtle differences in dendritic arborization pattern may have an impact on how synaptic integration takes place in these functionally distinct neuronal populations. Cholinergic neurons exhibited cortically projecting axons and extensive local axon collaterals. Elaborate local axonal arbors confined to the BF also originated from NPY-containing neurons. The presence of local axon collaterals in both cholinergic and NPY neurons indicates that the BF is not a mere conduit for various brainstem inputs to the cortex, but a site where substantial local processing must take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM (1983) Neuropeptide Y distribution in the rat brain. Science 221:877–879

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Khateb A, Fort P, Jones BE, Muhlethaler M (1996) Differential oscillatory properties of cholinergic and noncholinergic nucleus basalis neurons in guinea pig brain slice. Eur J Neurosci 8:169–182

    Article  PubMed  CAS  Google Scholar 

  • Aoki C, Pickel VM (1989) Neuropeptide Y in the cerebral cortex and the caudate-putamen nuclei: ultrastructural basis for interactions with GABAergic and non-GABAergic neurons. J Neurosci 9:4333–4354

    PubMed  CAS  Google Scholar 

  • Arendt T, Zvegintseva HG, Leontovich TA (1986) Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer’s disease—a quantitative Golgi investigation. Neuroscience 19:1265–1278

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Flicker C, Dean RL, Fisher S, Pontecorvo M, Figueiredo J (1986) Behavioral and biochemical effects of nucleus basalis magnocellularis lesions: implications and possible relevance to understanding or treating Alzheimer’s disease. Prog Brain Res 70:345–361

    PubMed  CAS  Google Scholar 

  • Bengtson CP, Osborne PB (2000) Electrophysiological properties of cholinergic and noncholinergic neurons in the ventral pallidal region of the nucleus basalis in rat brain slices. J Neurophysiol 83:2649–2660

    PubMed  CAS  Google Scholar 

  • Bialowas J, Frotscher M, (1987) Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study. J Comp Neurol 259:298–307

    Article  PubMed  CAS  Google Scholar 

  • Book AA, Wiley RG, Schweitzer JB (1994) 192 IgG-saporin: I. Specific lethality for cholinergic neurons in the basal forebrain of the rat. J Neuropathol Exp Neurol 53:95–102

    PubMed  CAS  Google Scholar 

  • Brashear HR, Zaborszky L, Heimer L (1986) Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience 17:439–451

    Article  PubMed  CAS  Google Scholar 

  • Brauer K, Schober W, Werner L, Winkelmann E, Lungwitz W, Hajdu F (1988) Neurons in the basal forebrain complex of the rat: a Golgi study. J Hirnforsch 29:43–71

    PubMed  CAS  Google Scholar 

  • Brauer K, Seeger G, Hartig W, Rossner S, Poethke R, Kacza J, Schliebs R, Bruckner G, Bigl V (1998) Electron microscopic evidence for a cholinergic innervation of GABAergic parvalbumin-immunoreactive neurons in the rat medial septum. J Neurosci Res 54:248–253

    Article  PubMed  CAS  Google Scholar 

  • Carnevale NT, Tsai KY, Claiborne BJ, Brown TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J Neurophysiol 78:703–720

    PubMed  CAS  Google Scholar 

  • Chen G, van den Pol AN (1996) Multiple NPY receptors coexist in pre- and postsynaptic sites: inhibition of GABA release in isolated self-innervating SCN neurons. J Neurosci 16:7711–7724

    PubMed  CAS  Google Scholar 

  • Chronwall BM, DiMaggio DA, Massari VJ, Pickel VM, Ruggiero DA, O’Donohue TL (1985) The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 15:1159–1181

    Article  PubMed  CAS  Google Scholar 

  • Csillik B, Rakic P, Knyihar-Csillik E (1998) Peptidergic innervation and the nicotinic acetylcholine receptor in the primate basal nucleus. Eur J Neurosci 10:573–585

    Article  PubMed  CAS  Google Scholar 

  • Dani JA (2001) Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatry 49:166–174

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease [letter]. Lancet 2:1403

    Article  PubMed  CAS  Google Scholar 

  • de Quidt ME, Emson PC (1986a) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system-II. Immunohistochemical analysis. Neuroscience 18:545–618

    Article  PubMed  Google Scholar 

  • de Quidt ME, Emson PC (1986b) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system-I. Radioimmunoassay and chromatographic characterisation. Neuroscience 18:527–543

    Article  PubMed  Google Scholar 

  • Detari L (2000) Tonic and phasic influence of basal forebrain unit activity on the cortical EEG. Behav Brain Res 115:159–170

    Article  PubMed  CAS  Google Scholar 

  • Detari L, Vanderwolf CH (1987) Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res 437:1–8

    Article  PubMed  CAS  Google Scholar 

  • Detari L, Rasmusson DD, Semba K (1999) The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol 58:249–277

    Article  PubMed  CAS  Google Scholar 

  • Dringenberg HC, Vanderwolf CH (1998) Involvement of direct and indirect pathways in electrocorticographic activation. Neurosci Biobehav Rev 22:243–257

    Article  PubMed  CAS  Google Scholar 

  • Duque A, Zaborszky L (2006) Juxtacellular labeling of individual neurons in vivo: from electrophysiology to synaptology. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3 molecules, neurons, and systems. Springer, New York, pp 197–236

    Chapter  Google Scholar 

  • Duque A, Balatoni B, Detari L, Zaborszky L (2000) EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 84:1627–1635

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Minthon L, Ekman R, Gustafson L (1993) Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia 4:167–171

    PubMed  CAS  Google Scholar 

  • Fisher RS, Levine MS (1989) Transmitter cosynthesis by corticopetal basal forebrain neurons. Brain Res 491:163–168

    Article  PubMed  CAS  Google Scholar 

  • Geula C, Mesulam MM (1994) Cholinergic systems and related neuropathological predilection patterns in Alzheimer disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer disease. Raven, New York, pp 263–291

    Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53:199–237

    Article  PubMed  CAS  Google Scholar 

  • Gritti I, Manns ID, Mainville L, Jones BE (2003) Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. J Comp Neurol 458:11–31

    Article  PubMed  Google Scholar 

  • Hajszan T, Zaborszky L (2002) Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat. J Comp Neurol 449:141–157

    Article  PubMed  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    PubMed  CAS  Google Scholar 

  • Hökfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    Article  PubMed  Google Scholar 

  • Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization. J Comp Neurol 483(3):351–73

    Article  PubMed  Google Scholar 

  • Jaeger D (2001) Accurate reconstruction of neuronal morphology. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. Lewis, Boca Raton, pp 159–178

    Google Scholar 

  • Jones BE, Muhlethaler M (1999) Cholinergic and GABAergic neurons of the basal forebrain: role in cortical activation. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioral state control—cellular and molecular mechanisms. CRC, Boca Raton, pp 213–234

    Google Scholar 

  • Kaspirzhny AV, Gogan P, Horcholle-Bossavit G, Tyc-Dumont S (2002) Neuronal morphology data bases: morphological noise and assessment of data quality. Network 13:357–380

    Article  PubMed  Google Scholar 

  • Khateb A, Muhlethaler M, Alonso A, Serafin M, Mainville L, Jones BE (1992) Cholinergic nucleus basalis neurons display the capacity for rhythmic bursting activity mediated by low-threshold calcium spikes. Neuroscience 51:489–494

    Article  PubMed  CAS  Google Scholar 

  • Khateb A, Fort P, Williams S, Serafin M, Jones BE, Muhlethaler M (1997) Modulation of cholinergic nucleus basalis neurons by acetylcholine and N-methyl-d-aspartate. Neuroscience 81:47–55

    Article  PubMed  CAS  Google Scholar 

  • Khateb A, Fort P, Williams S, Serafin M, Muhlethaler M, Jones BE (1998) GABAergic input to cholinergic nucleus basalis neurons. Neuroscience 86:937–947

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Eriksson L, Davies S, Chan-Palay V (1986) Neuropeptide Y innervation of the hippocampal region in the rat and monkey brain. J Comp Neurol 244:384–400

    Article  PubMed  Google Scholar 

  • Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941:11–28

    Article  PubMed  CAS  Google Scholar 

  • Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of carnivora. J Comp Neurol 121:347–379

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Brewer D, Burke RE, Ascoli GA (2005) Developmental changes in spinal motoneuron dendrites in neonatal mice. J Comp Neurol 483:304–317

    Article  PubMed  Google Scholar 

  • Manns ID, Alonso A, Jones BE (2000) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:1505–1518

    PubMed  CAS  Google Scholar 

  • Metcalf RH, Boegman RJ (1989) Release of acetylcholine from tissue slices of the rat nucleus basalis magnocellularis. J Neurochem 52:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Metcalf RH, Boegman RJ, Riopelle RJ, Ludwin SK (1988) The release of endogenous acetylcholine from the medial septum/diagonal band of rat brain. Neurosci Lett 93:85–90

    Article  PubMed  CAS  Google Scholar 

  • Millhouse OE (1986) Pallidal neurons in the rat. J Comp Neurol 254:209–227

    Article  PubMed  CAS  Google Scholar 

  • Minthon L, Edvinsson L, Gustafson L (1996) Correlation between clinical characteristics and cerebrospinal fluid neuropeptide Y levels in dementia of the Alzheimer type and frontotemporal dementia. Alzheimer Dis Assoc Disord 10:197–203

    Article  PubMed  CAS  Google Scholar 

  • Momiyama T, Zaborszky L (2006) Somatostatin presynaptically inhibits both GABA and glutamate release onto rat basal forebrain cholinergic neurons. J Neurophysiol 96:686–694

    Article  PubMed  CAS  Google Scholar 

  • Mosca KF, Duque A, Detari L, Noszek A, Rommer E, Zaborszky L (2005) Postsynaptic target of electrophysiologically identified NPY axons in the rat basal forebrain. Program No. 936.1. SFN Abstracts. Washington DC, Online

  • Nishimura LM, Boegman RJ (1990) N-methyl-d-aspartate-evoked release of acetylcholine from the medial septum/diagonal band of rat brain. Neurosci Lett 115:259–264

    Article  PubMed  CAS  Google Scholar 

  • Nunez A (1996) Unit activity of rat basal forebrain neurons: relationship to cortical activity. Neuroscience 72:757–766

    Article  PubMed  CAS  Google Scholar 

  • Pang K, Tepper JM, Zaborszky L (1998) Morphological and electrophysiological characteristics of noncholinergic basal forebrain neurons. J Comp Neurol 394:186–204

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Caldarone BJ, King SL, Zachariou V (2000) Nicotinic receptors in the brain. Links between molecular biology and behavior. Neuropsychopharmacology 22:451–465

    Article  PubMed  CAS  Google Scholar 

  • Pinault D (1994) Golgi-like labeling of a single neuron recorded extracellularly. Neurosci Lett 170:255–260

    Article  PubMed  CAS  Google Scholar 

  • Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J Neurosci Methods 65:113–136

    Article  PubMed  CAS  Google Scholar 

  • Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37:977–987

    Article  PubMed  CAS  Google Scholar 

  • Ramon-Moliner E (1962) An attempt at classifying nerve cells on the basis of their dendritic patterns. J Comp Neurol 119:211–227

    Article  PubMed  CAS  Google Scholar 

  • Ramon-Moliner E, Nauta WJ (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–336

    Article  PubMed  CAS  Google Scholar 

  • Reiner PB, Semba K, Fibiger HC, McGeer EG (1987) Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat. Neuroscience 20:629–636

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP (1999) Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 22:67–74

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6:48–56

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143–3154

    Article  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1961) On circuit patterns of the brain stem reticular core. Ann N Y Acad Sci 89:857–865

    Article  PubMed  CAS  Google Scholar 

  • Scorcioni RE, Ascoli GA (2001) Algorithmic extraction of morphological statistics from electronic archives of neuroanatomy. Lect Notes Comp Sci 2084:30–37

    Article  Google Scholar 

  • Scorcioni R, Lazarewicz MT, Ascoli GA (2004) Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. J Comp Neurol 473:177–193

    Article  PubMed  Google Scholar 

  • Semba K, Reiner PB, McGeer EG, Fibiger HC (1987) Morphology of cortically projecting basal forebrain neurons in the rat as revealed by intracellular iontophoresis of horseradish peroxidase. Neuroscience 20:637–651

    Article  PubMed  CAS  Google Scholar 

  • Sim JA, Griffith WH (1996) Muscarinic inhibition of glutamatergic transmissions onto rat magnocellular basal forebrain neurons in a thin-slice preparation. Eur J Neurosci 8:880–891

    Article  PubMed  CAS  Google Scholar 

  • Smiley JF, Levey AI, Mesulam MM (1999a) m2 muscarinic receptor immunolocalization in cholinergic cells of the monkey basal forebrain and striatum. Neuroscience 90:803–814

    Article  PubMed  CAS  Google Scholar 

  • Smiley JF, Subramanian M, Mesulam MM (1999b) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93:817–829

    Article  PubMed  CAS  Google Scholar 

  • Sun QQ, Akk G, Huguenard JR, Prince DA (2001) Differential regulation of GABA release and neuronal excitability mediated by neuropeptide Y1 and Y2 receptors in rat thalamic neurons. J Physiol 531:81–94

    Article  PubMed  CAS  Google Scholar 

  • Sun QQ, Baraban SC, Prince DA, Huguenard JR (2003) Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus. J Neurosci 23:9639–9649

    PubMed  CAS  Google Scholar 

  • Surkis A, Taylor B, Peskin CS, Leonard CS (1996) Quantitative morphology of physiologically identified and intracellularly labeled neurons from the guinea-pig laterodorsal tegmental nucleus in vitro. Neuroscience 74:375–392

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Zaborszky L, Detari L (2005) EEG effect of basal forebrain neuropeptide Y administration in urethane anaesthetized rats. Brain Res Bull 66:37–42

    Article  PubMed  CAS  Google Scholar 

  • Valverde F (1961a) A new type of cell in the lateral reticular formation of the brain stem. J Comp Neurol 117:189–195

    Article  PubMed  CAS  Google Scholar 

  • Valverde F (1961b) Reticular formation of the pons and medulla oblongata. A Golgi study. J Comp Neurol 116:71–99

    Article  PubMed  CAS  Google Scholar 

  • Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937

    PubMed  CAS  Google Scholar 

  • Vezzani A, Sperk G, Colmers WF (1999) Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 22:25–30

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res 21:30–46

    Article  PubMed  CAS  Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory [published erratum appears in J Neurosci 1995 Mar;15(3 Pt 2):following table of contents]. J Neurosci 14:167–186

    PubMed  CAS  Google Scholar 

  • Walker LC, Koliatsos VE, Kitt CA, Richardson RT, Rokaeus A, Price DL (1989a) Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J Comp Neurol 280:272–282

    Article  PubMed  CAS  Google Scholar 

  • Walker LC, Price DL, Young WS (1989b) GABAergic neurons in the primate basal forebrain magnocellular complex. Brain Res 499:188–192

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Wolak ML, DeJoseph MR, Cator AD, Mokashi AS, Brownfield MS, Urban JH (2003) Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry. J Comp Neurol 464:285–311

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Shanabrough M, Leranth C, Alreja M (2000) Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. J Neurosci 20:3900–3908

    PubMed  CAS  Google Scholar 

  • Yu MC, Luo CB, Long L, Yew DT (1993) An immunohistochemical study of neuropeptide Y positive sites in the developing human hippocampal formation. Brain Res Dev Brain Res 72:277–281

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Cullinan WE (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol 374:535–554

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Duque A (2000) Local synaptic connections of basal forebrain neurons. Behav Brain Res 115:143–158

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Duque A (2003) Sleep–wake mechanisms and basal forebrain circuitry. Front Biosci 8:d1146–d1169. [PubMed#:12957822] http://www.bioscience.org/

    Google Scholar 

  • Zaborszky L, Heimer L, Eckenstein F, Leranth C (1986) GABAergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immunolabeling. J Comp Neurol 250:282–295

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877:339–367

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Csordas A, Duque A, Somogy J, Nadasdy Z (2002) Computational anatomical analysis of the basal forebrain corticopetal system. In: Ascoli G (ed) Computational neuroanatomy: principles and methods. Humana, Totowa, pp 171–197

    Chapter  Google Scholar 

  • Zador AM, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: a graphical approach to dendritic function. J Neurosci 15:1669–1682

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by: NIH NS23945, NS34865, NS39600, R25 GM60826, and NSF 9413198. The authors wish to acknowledge that some of the neurons analyzed in this study were juxtacellularly labeled in cooperation with Dr. B. Balatoni. Plastic embedding of sections was done by Mrs. Erzsebet Rommer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Zaborszky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2007_143_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duque, A., Tepper, J.M., Detari, L. et al. Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons. Brain Struct Funct 212, 55–73 (2007). https://doi.org/10.1007/s00429-007-0143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0143-3

Keywords

Navigation