Skip to main content
Erschienen in: Brain Structure and Function 1-2/2008

01.09.2008 | Original Article

Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors

verfasst von: Aline Pinto, Susan R. Sesack

Erschienen in: Brain Structure and Function | Ausgabe 1-2/2008

Einloggen, um Zugang zu erhalten

Abstract

Projections from the prefrontal cortex (PFC) to the amygdala (AMG) regulate affective behaviors in a manner that is modulated by dopamine (DA). Although PFC and DA inputs overlap within the basolateral nucleus (BLA) and intercalated cell masses (ICMs), the spatial relationship between these afferents has not been investigated, nor is it known how DA D1 (D1R) and D2 (D2R) receptors are localized in relationship to PFC terminals. We therefore combined tract-tracing from the rat PFC to the AMG with immunocytochemical labeling of tyrosine hydroxylase (TH) to identify presumed DA axons or D1R and D2R. In both the ICMs and BLA, PFC terminals formed asymmetric synapses onto spines that typically did not receive secondary synaptic inputs. TH-immunoreactive (-ir) fibers in the adjacent neuropil typically contacted different structures. Although PFC and TH-ir axons were sometimes apposed to the same dendrites or to each other, PFC terminals only rarely synapsed onto dendrites that also received synapses from TH-ir axons. D1R-ir spines and dendrites were observed commonly within the ICMs but less frequently within the BLA, and PFC axons in the ICMs occasionally synapsed onto D1R-ir spines. Within both regions, D2R-ir spines, dendrites, and axons were observed. PFC terminals occasionally contained presynaptic labeling for D2R but were not observed to synapse onto D2R-ir targets. The infrequent observation of synaptic convergence between PFC and presumed DA terminals within the AMG suggests that DA modulates PFC inputs primarily via extrasynaptic mechanisms, a conclusion supported by the localization of D2R within and D1R postsynaptic to PFC terminals.
Literatur
Zurück zum Zitat Asan E (1997) Ultrastructural features of tyrosine-hydroxylase-immunoreactive afferents and their targets in the rat amygdala. Cell Tissue Res 288:449–469PubMedCrossRef Asan E (1997) Ultrastructural features of tyrosine-hydroxylase-immunoreactive afferents and their targets in the rat amygdala. Cell Tissue Res 288:449–469PubMedCrossRef
Zurück zum Zitat Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–119PubMed Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–119PubMed
Zurück zum Zitat Asan E (1993) Comparative single and double immunolabelling with antisera against catecholamine biosynthetic enzymes: criteria for the identification of dopaminergic, noradrenergic and adrenergic structures in selected rat brain areas. Histochemistry 99:427–442PubMed Asan E (1993) Comparative single and double immunolabelling with antisera against catecholamine biosynthetic enzymes: criteria for the identification of dopaminergic, noradrenergic and adrenergic structures in selected rat brain areas. Histochemistry 99:427–442PubMed
Zurück zum Zitat Bandyopadhyay S, Gonzalez-Islas C, Hablitz JJ (2004) Dopamine enhances spatiotemporal spread of activity in rat prefrontal cortex. J Neurophysiol 93:864–872PubMedCrossRef Bandyopadhyay S, Gonzalez-Islas C, Hablitz JJ (2004) Dopamine enhances spatiotemporal spread of activity in rat prefrontal cortex. J Neurophysiol 93:864–872PubMedCrossRef
Zurück zum Zitat Baxter M, Parker A, Lindner C, Izquierdo A, Murray E (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319PubMed Baxter M, Parker A, Lindner C, Izquierdo A, Murray E (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319PubMed
Zurück zum Zitat Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953PubMedCrossRef Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953PubMedCrossRef
Zurück zum Zitat Boundy VA, Luedtke RR, Artymyshyn RP, Filtz TM, Molinoff PB (1993) Development of polyclonal anti-D2 dopamine receptor antibodies using sequence-specific peptides. Mol Pharmacol 43:666–676PubMed Boundy VA, Luedtke RR, Artymyshyn RP, Filtz TM, Molinoff PB (1993) Development of polyclonal anti-D2 dopamine receptor antibodies using sequence-specific peptides. Mol Pharmacol 43:666–676PubMed
Zurück zum Zitat Boyson S, McGonigle P, Molinoff P (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci 6:3177–3188PubMed Boyson S, McGonigle P, Molinoff P (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci 6:3177–3188PubMed
Zurück zum Zitat Brinley-Reed M, McDonald AJ (1999) Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res 850:127–135PubMedCrossRef Brinley-Reed M, McDonald AJ (1999) Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res 850:127–135PubMedCrossRef
Zurück zum Zitat Brinley-Reed M, Mascagni F, McDonald AJ (1995) Synaptology of prefrontal cortical projections to the basolateral amygdala: an electron microscopic study in the rat. Neurosci Lett 202:45–48PubMedCrossRef Brinley-Reed M, Mascagni F, McDonald AJ (1995) Synaptology of prefrontal cortical projections to the basolateral amygdala: an electron microscopic study in the rat. Neurosci Lett 202:45–48PubMedCrossRef
Zurück zum Zitat Cassell MD, Wright DJ (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17:321–333PubMedCrossRef Cassell MD, Wright DJ (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17:321–333PubMedCrossRef
Zurück zum Zitat Ciliax BJ, Hersch SM, Levey AI (1994) Immunocytochemical localization of D1 and D2 receptors in rat brain. In: Niznik HB (ed) Dopamine receptors and transporters: pharmacology, structure and function. Dekker, New York, pp 383–399 Ciliax BJ, Hersch SM, Levey AI (1994) Immunocytochemical localization of D1 and D2 receptors in rat brain. In: Niznik HB (ed) Dopamine receptors and transporters: pharmacology, structure and function. Dekker, New York, pp 383–399
Zurück zum Zitat Collins DR, Pare D (1999) Reciprocal changes in the firing probability of lateral and central medial amygdala neurons. J Neurosci 19:836–844PubMed Collins DR, Pare D (1999) Reciprocal changes in the firing probability of lateral and central medial amygdala neurons. J Neurosci 19:836–844PubMed
Zurück zum Zitat Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80PubMedCrossRef Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80PubMedCrossRef
Zurück zum Zitat Davis M (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton J (ed) The amygdala—a funtional analysis. Oxford University Press, New York, pp 213–287 Davis M (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton J (ed) The amygdala—a funtional analysis. Oxford University Press, New York, pp 213–287
Zurück zum Zitat Descarries L, Umbriaco D (1995) Ultrastructural basis of monoamine and acetylcholine function in CNS. Semin Neurosci 7:309–318CrossRef Descarries L, Umbriaco D (1995) Ultrastructural basis of monoamine and acetylcholine function in CNS. Semin Neurosci 7:309–318CrossRef
Zurück zum Zitat Descarries L, Watkins KC, Garcia S, Bosler O, Doucet G (1996) Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative audoradiographic and immunocytochemical analysis. J Comp Neurol 375:167–186PubMedCrossRef Descarries L, Watkins KC, Garcia S, Bosler O, Doucet G (1996) Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative audoradiographic and immunocytochemical analysis. J Comp Neurol 375:167–186PubMedCrossRef
Zurück zum Zitat Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985:420–444PubMedCrossRef Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985:420–444PubMedCrossRef
Zurück zum Zitat Dumartin B, Caillé I, Gonon F, Bloch B (1998) Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists. J Neurosci 18:1650–1661PubMed Dumartin B, Caillé I, Gonon F, Bloch B (1998) Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists. J Neurosci 18:1650–1661PubMed
Zurück zum Zitat Fallon J, Ciofi P (1992) Distribution of monoamines within the amygdala. In: Aggleton J (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc., New York, pp 97–114 Fallon J, Ciofi P (1992) Distribution of monoamines within the amygdala. In: Aggleton J (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc., New York, pp 97–114
Zurück zum Zitat Fremeau R, Duncan G, Fornaretto M-G, Dearry A, Gingrich J, Breese G, Caron M (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic transmission. Proc Natl Acad Sci 88:3772–3776PubMedCrossRef Fremeau R, Duncan G, Fornaretto M-G, Dearry A, Gingrich J, Breese G, Caron M (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic transmission. Proc Natl Acad Sci 88:3772–3776PubMedCrossRef
Zurück zum Zitat Freund T, Powell J, Smith A (1984) Tyrosine hydroxylase-imunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to denritic spines. Neuroscience 13:1189–1215PubMedCrossRef Freund T, Powell J, Smith A (1984) Tyrosine hydroxylase-imunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to denritic spines. Neuroscience 13:1189–1215PubMedCrossRef
Zurück zum Zitat Fuxe K, Jacobsen KX, Höistad M, Tinner B, Jansson A, Staines WA, Agnati LF (2003) The dopamine D1 receptor-rich main and paracapsular intercalated nerve cell groups of the rat amygdala: relationship to the dopamine innervation. Neuroscience 119:733–746PubMedCrossRef Fuxe K, Jacobsen KX, Höistad M, Tinner B, Jansson A, Staines WA, Agnati LF (2003) The dopamine D1 receptor-rich main and paracapsular intercalated nerve cell groups of the rat amygdala: relationship to the dopamine innervation. Neuroscience 119:733–746PubMedCrossRef
Zurück zum Zitat Garcia R, Vouimba RM, Baudry M, Thompson RF (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294–296PubMedCrossRef Garcia R, Vouimba RM, Baudry M, Thompson RF (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294–296PubMedCrossRef
Zurück zum Zitat Garris P, Wightman R (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltametric study. J Neurosci 14:442–450PubMed Garris P, Wightman R (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltametric study. J Neurosci 14:442–450PubMed
Zurück zum Zitat Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063PubMedCrossRef Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063PubMedCrossRef
Zurück zum Zitat Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci 86:9015–9019PubMedCrossRef Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci 86:9015–9019PubMedCrossRef
Zurück zum Zitat Grace AA, Rosenkranz JA (2002) Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 77:489–493PubMedCrossRef Grace AA, Rosenkranz JA (2002) Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 77:489–493PubMedCrossRef
Zurück zum Zitat Gracy KN, Pickel VM (1996) Ultrastructural immunocytochemical localization of the N-methyl-D-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens. Brain Res 739:169–181PubMedCrossRef Gracy KN, Pickel VM (1996) Ultrastructural immunocytochemical localization of the N-methyl-D-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens. Brain Res 739:169–181PubMedCrossRef
Zurück zum Zitat Greba Q, Gifkins A, Kokkinidis L (2001) Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res 899:218–226PubMedCrossRef Greba Q, Gifkins A, Kokkinidis L (2001) Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res 899:218–226PubMedCrossRef
Zurück zum Zitat Greba Q, Kokkinidis L (2000) Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH 23390 blocks fear-potentiated startle but not shock reactivity of the shock sensitization of acoustic startle. Behav Neurosci 114:262–272PubMedCrossRef Greba Q, Kokkinidis L (2000) Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH 23390 blocks fear-potentiated startle but not shock reactivity of the shock sensitization of acoustic startle. Behav Neurosci 114:262–272PubMedCrossRef
Zurück zum Zitat Guarraci F, Frohardt R, Falls W, Kapp B (2000) The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav Neurosci 114:647–651PubMedCrossRef Guarraci F, Frohardt R, Falls W, Kapp B (2000) The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav Neurosci 114:647–651PubMedCrossRef
Zurück zum Zitat Guarraci FA, Frohardt RJ, Kapp BS (1999) Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res 827:28–40PubMedCrossRef Guarraci FA, Frohardt RJ, Kapp BS (1999) Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res 827:28–40PubMedCrossRef
Zurück zum Zitat Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMed Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMed
Zurück zum Zitat Huang Q, Zhou D, Chase K, Gusella J, Aronin N, DiFiglia M (1992) Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc Natl Acad Sci 89:11988–11992PubMedCrossRef Huang Q, Zhou D, Chase K, Gusella J, Aronin N, DiFiglia M (1992) Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc Natl Acad Sci 89:11988–11992PubMedCrossRef
Zurück zum Zitat Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094PubMedCrossRef Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094PubMedCrossRef
Zurück zum Zitat Johnson LR, Aylward RLM, Hussain Z, Totterdell S (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61:851–865PubMedCrossRef Johnson LR, Aylward RLM, Hussain Z, Totterdell S (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61:851–865PubMedCrossRef
Zurück zum Zitat Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93:1598–1610PubMedCrossRef Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93:1598–1610PubMedCrossRef
Zurück zum Zitat Lamont EW, Kokkinidis L (1998) Infusion of the dopamine D1 receptor antagonist SCH 23390 into the amygdala blocks fear expression in a potentiated startle paradigm. Brain Res 795:128–136PubMedCrossRef Lamont EW, Kokkinidis L (1998) Infusion of the dopamine D1 receptor antagonist SCH 23390 into the amygdala blocks fear expression in a potentiated startle paradigm. Brain Res 795:128–136PubMedCrossRef
Zurück zum Zitat Levey A, Hersch S, Rye D, Sunahara R, Niznik H, Kitt C, Price D, Maggio R, Brann M, Ciliax B (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci 90:8861–8865PubMedCrossRef Levey A, Hersch S, Rye D, Sunahara R, Niznik H, Kitt C, Price D, Maggio R, Brann M, Ciliax B (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci 90:8861–8865PubMedCrossRef
Zurück zum Zitat Lewis DA, Sesack SR (1997) Dopamine systems in the primate brain. In: Bloom FE, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: the primate nervous system, Part 1. Elsevier, Amsterdam, pp 261–373 Lewis DA, Sesack SR (1997) Dopamine systems in the primate brain. In: Bloom FE, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: the primate nervous system, Part 1. Elsevier, Amsterdam, pp 261–373
Zurück zum Zitat Lorétan K, Bissière S, Lüthi A (2004) Dopaminergic modulation of spontaneous inhibitory network activity in the lateral amygdala. Neuropharmacology 47:631–639PubMedCrossRef Lorétan K, Bissière S, Lüthi A (2004) Dopaminergic modulation of spontaneous inhibitory network activity in the lateral amygdala. Neuropharmacology 47:631–639PubMedCrossRef
Zurück zum Zitat Maltais S, Coté S, Drolet G, Falardeau P (2000) Cellular colocalization of dopamine D1 mRNA and D2 receptor in rat brain using a D2 dopamine receptor specific polyclonal antibody. Prog Neuropsychopharmacol Biol Psychiatry 24:1127–1149PubMedCrossRef Maltais S, Coté S, Drolet G, Falardeau P (2000) Cellular colocalization of dopamine D1 mRNA and D2 receptor in rat brain using a D2 dopamine receptor specific polyclonal antibody. Prog Neuropsychopharmacol Biol Psychiatry 24:1127–1149PubMedCrossRef
Zurück zum Zitat Marowsky A, Yanagawa Y, Obata K, Vogt KE (2005) A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48:1025–1037PubMedCrossRef Marowsky A, Yanagawa Y, Obata K, Vogt KE (2005) A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48:1025–1037PubMedCrossRef
Zurück zum Zitat McDonald A (1992) Projection neurons of the basolateral amygdala: a correlative golgi and retrograde tract tracing study. Brain Res Bull 28:179–185PubMedCrossRef McDonald A (1992) Projection neurons of the basolateral amygdala: a correlative golgi and retrograde tract tracing study. Brain Res Bull 28:179–185PubMedCrossRef
Zurück zum Zitat McDonald AJ, Muller JF, Mascagni F (2002) GABAergic innervation of alpha type II calcium/calmodulin-dependent protein kinase immunoreactive pyramidal neurons in the rat basolateral amygdala. J Comp Neurol 446:199–218PubMedCrossRef McDonald AJ, Muller JF, Mascagni F (2002) GABAergic innervation of alpha type II calcium/calmodulin-dependent protein kinase immunoreactive pyramidal neurons in the rat basolateral amygdala. J Comp Neurol 446:199–218PubMedCrossRef
Zurück zum Zitat McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75PubMedCrossRef McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75PubMedCrossRef
Zurück zum Zitat Meador-Woodruff JH, Mansour A, Healy DJ, Kuehn R, Zhou Q-Y, Bunzow JR, Akil H, Civelli O, Watson SJ (1991) Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5:231–242PubMed Meador-Woodruff JH, Mansour A, Healy DJ, Kuehn R, Zhou Q-Y, Bunzow JR, Akil H, Civelli O, Watson SJ (1991) Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5:231–242PubMed
Zurück zum Zitat Miner L, Schroeter S, Blakely R, Sesack S (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494PubMedCrossRef Miner L, Schroeter S, Blakely R, Sesack S (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494PubMedCrossRef
Zurück zum Zitat Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L (1998) Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 33:383–397PubMedCrossRef Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L (1998) Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 33:383–397PubMedCrossRef
Zurück zum Zitat Morgan MA, LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109:681–688PubMedCrossRef Morgan MA, LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109:681–688PubMedCrossRef
Zurück zum Zitat Morgan MA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163:109–113PubMedCrossRef Morgan MA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163:109–113PubMedCrossRef
Zurück zum Zitat Muller JF, Mascagni F, McDonald AJ (2006) Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 494:635–650PubMedCrossRef Muller JF, Mascagni F, McDonald AJ (2006) Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 494:635–650PubMedCrossRef
Zurück zum Zitat Nader K, LeDoux J (1999) The dopaminergic modulation of fear: quinpirole impairs the recall of emotional memories in rats. Behav Neurosci 113:152–165PubMedCrossRef Nader K, LeDoux J (1999) The dopaminergic modulation of fear: quinpirole impairs the recall of emotional memories in rats. Behav Neurosci 113:152–165PubMedCrossRef
Zurück zum Zitat Negyessy L, Goldman-Rakic PS (2005) Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J Comp Neurol 488:464–475PubMedCrossRef Negyessy L, Goldman-Rakic PS (2005) Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J Comp Neurol 488:464–475PubMedCrossRef
Zurück zum Zitat Nitecka L, Ben-Ari Y (1987) Distribution of GABA-like immunoreactivity in the rat amygdaloid complex. J Comp Neurol 266:45–55PubMedCrossRef Nitecka L, Ben-Ari Y (1987) Distribution of GABA-like immunoreactivity in the rat amygdaloid complex. J Comp Neurol 266:45–55PubMedCrossRef
Zurück zum Zitat Ordronneau P, Lindström P-M, Petrusz P (1981) Four unlabeled antibody bridge techniques: a comparison. J Histochem Cytochem 29:1397–1404PubMed Ordronneau P, Lindström P-M, Petrusz P (1981) Four unlabeled antibody bridge techniques: a comparison. J Histochem Cytochem 29:1397–1404PubMed
Zurück zum Zitat Ottersen OP (1982) Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205:30–48PubMedCrossRef Ottersen OP (1982) Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205:30–48PubMedCrossRef
Zurück zum Zitat Pape HC (2005) GABAergic neurons: gate masters of the amygdala, mastered by dopamine. Neuron 48:877–879PubMedCrossRef Pape HC (2005) GABAergic neurons: gate masters of the amygdala, mastered by dopamine. Neuron 48:877–879PubMedCrossRef
Zurück zum Zitat Paspalas CD, Goldman-Rakic PS (2004) Microdomains for dopamine volume neurotransmission in primate prefrontal cortex. J Neurosci 24:5292–5300PubMedCrossRef Paspalas CD, Goldman-Rakic PS (2004) Microdomains for dopamine volume neurotransmission in primate prefrontal cortex. J Neurosci 24:5292–5300PubMedCrossRef
Zurück zum Zitat Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd edn. Academic Press, New York Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd edn. Academic Press, New York
Zurück zum Zitat Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system: neurons and their supporting cells. 3rd edn. Oxford, New York Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system: neurons and their supporting cells. 3rd edn. Oxford, New York
Zurück zum Zitat Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004) Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43:897–905PubMedCrossRef Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004) Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43:897–905PubMedCrossRef
Zurück zum Zitat Pickel V, Colago E, Mania I, Molosh A, Rainnie D (2006) Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala. Neuroscience 142:671–690PubMedCrossRef Pickel V, Colago E, Mania I, Molosh A, Rainnie D (2006) Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala. Neuroscience 142:671–690PubMedCrossRef
Zurück zum Zitat Pinto A, Sesack S (2003) Prefrontal cortex projections to the rat amygdala: spatial relationships to dopamine and serotonin afferents. In: Shinnick-Gallagher P, Pitkänen A, Shekhar A, Cahill L (eds) The amygdala in brain function: basic and clinical approaches. New York Academy of Sciences, New York, pp 542–544 Pinto A, Sesack S (2003) Prefrontal cortex projections to the rat amygdala: spatial relationships to dopamine and serotonin afferents. In: Shinnick-Gallagher P, Pitkänen A, Shekhar A, Cahill L (eds) The amygdala in brain function: basic and clinical approaches. New York Academy of Sciences, New York, pp 542–544
Zurück zum Zitat Pinto AP, Sesack SR (2000) Limited collateralization of neurons in the rat prefrontal cortex that project to the nucleus accumbens. Neuroscience 97:635–642PubMedCrossRef Pinto AP, Sesack SR (2000) Limited collateralization of neurons in the rat prefrontal cortex that project to the nucleus accumbens. Neuroscience 97:635–642PubMedCrossRef
Zurück zum Zitat Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800–8807PubMed Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800–8807PubMed
Zurück zum Zitat Rauch SL, Shin LM, Wright CI (2003) Neuroimaging studies of amygdala function in anxiety disorders. Ann NY Acad Sci 985:389–410PubMedCrossRef Rauch SL, Shin LM, Wright CI (2003) Neuroimaging studies of amygdala function in anxiety disorders. Ann NY Acad Sci 985:389–410PubMedCrossRef
Zurück zum Zitat Roberts AC, Wallis JD (2000) Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex 10:252–262PubMedCrossRef Roberts AC, Wallis JD (2000) Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex 10:252–262PubMedCrossRef
Zurück zum Zitat Rosenkranz J, Grace A (2001) Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 21:4090–4103PubMed Rosenkranz J, Grace A (2001) Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 21:4090–4103PubMed
Zurück zum Zitat Rosenkranz J, Grace A (2002a) Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417:282–287PubMedCrossRef Rosenkranz J, Grace A (2002a) Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417:282–287PubMedCrossRef
Zurück zum Zitat Rosenkranz JA, Grace AA (1999) Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 19:11027–11039PubMed Rosenkranz JA, Grace AA (1999) Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 19:11027–11039PubMed
Zurück zum Zitat Rosenkranz JA, Grace AA (2002b) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337PubMed Rosenkranz JA, Grace AA (2002b) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337PubMed
Zurück zum Zitat Royer S, Martina M, Pare D (1999) An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 19:10575–10583PubMed Royer S, Martina M, Pare D (1999) An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 19:10575–10583PubMed
Zurück zum Zitat Scibilia RJ, Lachowicz JE, Kilts CD (1992) Topographic nonoverlapping distribution of D1 and D2 dopamine receptors in the amygdaloid nuclear complex of the rat brain. Synapse 11:146–154PubMedCrossRef Scibilia RJ, Lachowicz JE, Kilts CD (1992) Topographic nonoverlapping distribution of D1 and D2 dopamine receptors in the amygdaloid nuclear complex of the rat brain. Synapse 11:146–154PubMedCrossRef
Zurück zum Zitat Séguéla P, Watkins KC, Descarries L (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and suprarhinal cortex of adult rat brain. Brain Res 442:11–22PubMedCrossRef Séguéla P, Watkins KC, Descarries L (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and suprarhinal cortex of adult rat brain. Brain Res 442:11–22PubMedCrossRef
Zurück zum Zitat Sesack S, Aoki C, Pickel V (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106PubMed Sesack S, Aoki C, Pickel V (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106PubMed
Zurück zum Zitat Sesack S (2002) Synaptology of dopamine neurons. In: Chiara GD (ed) Dopamine in the CNS. Springer-Verlag, Berlin, pp 63–119 Sesack S (2002) Synaptology of dopamine neurons. In: Chiara GD (ed) Dopamine in the CNS. Springer-Verlag, Berlin, pp 63–119
Zurück zum Zitat Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242PubMedCrossRef Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242PubMedCrossRef
Zurück zum Zitat Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279PubMedCrossRef Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279PubMedCrossRef
Zurück zum Zitat Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160PubMedCrossRef Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160PubMedCrossRef
Zurück zum Zitat Sesack SR, Snyder CL, Lewis DA (1995) Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J Comp Neurol 363:264–280PubMedCrossRef Sesack SR, Snyder CL, Lewis DA (1995) Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J Comp Neurol 363:264–280PubMedCrossRef
Zurück zum Zitat Sesack SR, Miner LAH, Omelchenko N (2006) Pre-embedding immunoelectron microscopy: applications for studies of the nervous system. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, systems. Springer, New York, pp 6–71CrossRef Sesack SR, Miner LAH, Omelchenko N (2006) Pre-embedding immunoelectron microscopy: applications for studies of the nervous system. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, systems. Springer, New York, pp 6–71CrossRef
Zurück zum Zitat Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabelling technique. Cereb Cortex 3:223–238PubMedCrossRef Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabelling technique. Cereb Cortex 3:223–238PubMedCrossRef
Zurück zum Zitat Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353PubMedCrossRef Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353PubMedCrossRef
Zurück zum Zitat Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRef Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRef
Zurück zum Zitat Veznedaroglu E, Milner TE (1992) Elimination of artifactual labeling of hippocampal mossy fibers seen following pre-embedding immunogold-silver technique by pretreatment with zinc chelator. Microsc Res Tech 23:100–101PubMedCrossRef Veznedaroglu E, Milner TE (1992) Elimination of artifactual labeling of hippocampal mossy fibers seen following pre-embedding immunogold-silver technique by pretreatment with zinc chelator. Microsc Res Tech 23:100–101PubMedCrossRef
Zurück zum Zitat Wang H, Pickel VM (2002) Dopamine D2 receptors are present in the prefrontal cortical afferents and their targets in patches of the rat caudate putamen nucleus. J Comp Neurol 442:392–404PubMedCrossRef Wang H, Pickel VM (2002) Dopamine D2 receptors are present in the prefrontal cortical afferents and their targets in patches of the rat caudate putamen nucleus. J Comp Neurol 442:392–404PubMedCrossRef
Zurück zum Zitat Weiner D, Levey A, Sunahara R, Niznik H, O’Dowd B, Seeman P, Brann M (1991) D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci 88:1859–1863PubMedCrossRef Weiner D, Levey A, Sunahara R, Niznik H, O’Dowd B, Seeman P, Brann M (1991) D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci 88:1859–1863PubMedCrossRef
Zurück zum Zitat Wolf ME, LeWitt PA, Bannon MJ, Dragovic LJ, Kapatos G (1991) Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J Neurochem 56:1191–1200PubMedCrossRef Wolf ME, LeWitt PA, Bannon MJ, Dragovic LJ, Kapatos G (1991) Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J Neurochem 56:1191–1200PubMedCrossRef
Zurück zum Zitat Wouterlood F, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy. J Neurosci Meth 48:75–87CrossRef Wouterlood F, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy. J Neurosci Meth 48:75–87CrossRef
Zurück zum Zitat Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730PubMedCrossRef Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730PubMedCrossRef
Metadaten
Titel
Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors
verfasst von
Aline Pinto
Susan R. Sesack
Publikationsdatum
01.09.2008
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 1-2/2008
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-008-0180-6

Weitere Artikel der Ausgabe 1-2/2008

Brain Structure and Function 1-2/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.