Skip to main content
Erschienen in: Brain Structure and Function 3/2013

01.05.2013 | Original Article

Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons

verfasst von: Gabor Veress, Zoltan Meszar, Dora Muszil, Antonio Avelino, Klara Matesz, Ken Mackie, Istvan Nagy

Erschienen in: Brain Structure and Function | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

The cannabinoid 1 (CB1) receptor is expressed by a sub-population of primary sensory neurons. However, data on the neurochemical identity of the CB1 receptor-expressing cells, and CB1 receptor expression by the peripheral and central terminals of these neurons are inconsistent and limited. We characterised CB1 receptor expression in dorsal root ganglia (DRG) and spinal cord at the lumbar 4–5 level, as well as in the urinary bladder and glabrous skin of the hindpaw. About 1/3 of DRG neurons exhibited immunopositivity for the CB1 receptor, the majority of which showed positivity for the nociceptive markers calcitonin gene-related peptide (CGRP) or/and Griffonia (bandeiraea) simplicifolia IB4 isolectin-binding. Virtually all CB1 receptor-immunostained fibres showed immunopositivity for CGRP in the skin, while very few did in the urinary bladder. No CB1 receptor-immunopositive nerve fibres were IB4 positive in either peripheral tissue. Spinal laminae I and II-outer showed the highest density of CB1 receptor-immunopositive punctae, the majority of which showed positivity for CGRP or/and IB4 binding. These data indicate that a major sub-population of nociceptive primary sensory neurons expresses CB1 receptors that are transported to both peripheral and central terminals of these cells. Therefore, the present data suggest that manipulation of endogenous CB1 receptor agonist levels in these areas may significantly reduce nociceptive input into the spinal cord.
Literatur
Zurück zum Zitat Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics Int 11(7):36–42 Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics Int 11(7):36–42
Zurück zum Zitat Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879. doi:10.1038/nn1916 PubMedCrossRef Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879. doi:10.​1038/​nn1916 PubMedCrossRef
Zurück zum Zitat Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100(4):685–688. pii:S0306452200003894PubMedCrossRef Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100(4):685–688. pii:S0306452200003894PubMedCrossRef
Zurück zum Zitat Ahluwalia J, Urban L, Bevan S, Capogna M, Nagy I (2002) Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience 110(4):747–753. pii:S0306452201006017PubMedCrossRef Ahluwalia J, Urban L, Bevan S, Capogna M, Nagy I (2002) Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience 110(4):747–753. pii:S0306452201006017PubMedCrossRef
Zurück zum Zitat Ahluwalia J, Urban L, Bevan S, Nagy I (2003a) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17(12):2611–2618. pii: 2703PubMedCrossRef Ahluwalia J, Urban L, Bevan S, Nagy I (2003a) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17(12):2611–2618. pii: 2703PubMedCrossRef
Zurück zum Zitat Ahluwalia J, Yaqoob M, Urban L, Bevan S, Nagy I (2003b) Activation of capsaicin-sensitive primary sensory neurones induces anandamide production and release. J Neurochem 84(3):585–591. pii: 1550PubMedCrossRef Ahluwalia J, Yaqoob M, Urban L, Bevan S, Nagy I (2003b) Activation of capsaicin-sensitive primary sensory neurones induces anandamide production and release. J Neurochem 84(3):585–591. pii: 1550PubMedCrossRef
Zurück zum Zitat Amaya F, Shimosato G, Kawasaki Y, Hashimoto S, Tanaka Y, Ji RR, Tanaka M (2006) Induction of CB1 cannabinoid receptor by inflammation in primary afferent neurons facilitates antihyperalgesic effect of peripheral CB1 agonist. Pain 124(1–2):175–183. doi:10.1016/j.pain.2006.04.001 PubMedCrossRef Amaya F, Shimosato G, Kawasaki Y, Hashimoto S, Tanaka Y, Ji RR, Tanaka M (2006) Induction of CB1 cannabinoid receptor by inflammation in primary afferent neurons facilitates antihyperalgesic effect of peripheral CB1 agonist. Pain 124(1–2):175–183. doi:10.​1016/​j.​pain.​2006.​04.​001 PubMedCrossRef
Zurück zum Zitat Avelino A, Cruz C, Nagy I, Cruz F (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109(4):787–798. pii: S0306452201004961PubMedCrossRef Avelino A, Cruz C, Nagy I, Cruz F (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109(4):787–798. pii: S0306452201004961PubMedCrossRef
Zurück zum Zitat Bennett DL, Dmietrieva N, Priestley JV, Clary D, McMahon SB (1996) trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat. Neurosci Lett 206(1):33–36. pii: 0304394096124186PubMedCrossRef Bennett DL, Dmietrieva N, Priestley JV, Clary D, McMahon SB (1996) trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat. Neurosci Lett 206(1):33–36. pii: 0304394096124186PubMedCrossRef
Zurück zum Zitat Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316(5828):1212–1216. doi:10.1126/science.1137406 PubMedCrossRef Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316(5828):1212–1216. doi:10.​1126/​science.​1137406 PubMedCrossRef
Zurück zum Zitat Binzen U, Greffrath W, Hennessy S, Bausen M, Saaler-Reinhardt S, Treede RD (2006) Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience 142(2):527–539. doi:10.1016/j.neuroscience.2006.06.020 Binzen U, Greffrath W, Hennessy S, Bausen M, Saaler-Reinhardt S, Treede RD (2006) Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience 142(2):527–539. doi:10.​1016/​j.​neuroscience.​2006.​06.​020
Zurück zum Zitat Bridges D, Rice AS, Egertova M, Elphick MR, Winter J, Michael GJ (2003) Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience 119(3):803–812. pii:S0306452203002008PubMedCrossRef Bridges D, Rice AS, Egertova M, Elphick MR, Winter J, Michael GJ (2003) Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience 119(3):803–812. pii:S0306452203002008PubMedCrossRef
Zurück zum Zitat Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65(4):999–1007. doi:10.1124/mol.65.4.99965/4/999 PubMedCrossRef Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65(4):999–1007. doi:10.​1124/​mol.​65.​4.​99965/​4/​999 PubMedCrossRef
Zurück zum Zitat Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 111(1):43–50. doi:10.1172/JCI16116 PubMed Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 111(1):43–50. doi:10.​1172/​JCI16116 PubMed
Zurück zum Zitat Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA 106(22):9075–9080. doi:10.1073/pnas.0901507106 PubMedCrossRef Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA 106(22):9075–9080. doi:10.​1073/​pnas.​0901507106 PubMedCrossRef
Zurück zum Zitat Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377(6548):428–431. doi:10.1038/377428a0 PubMedCrossRef Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377(6548):428–431. doi:10.​1038/​377428a0 PubMedCrossRef
Zurück zum Zitat Choi JS, Dib-Hajj SD, Waxman SG (2007) Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4 + and IB4- DRG neurons. J Neurophysiol 97(2):1258–1265. doi:10.1152/jn.01033.2006 PubMedCrossRef Choi JS, Dib-Hajj SD, Waxman SG (2007) Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4 + and IB4- DRG neurons. J Neurophysiol 97(2):1258–1265. doi:10.​1152/​jn.​01033.​2006 PubMedCrossRef
Zurück zum Zitat Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A, Tontini A, Sanchini S, Sciolino NR, Spradley JM, Hohmann AG, Calignano A, Mor M, Tarzia G, Piomelli D (2010) Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci 13(10):1265–1270. doi:10.1038/nn.2632 PubMedCrossRef Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A, Tontini A, Sanchini S, Sciolino NR, Spradley JM, Hohmann AG, Calignano A, Mor M, Tarzia G, Piomelli D (2010) Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci 13(10):1265–1270. doi:10.​1038/​nn.​2632 PubMedCrossRef
Zurück zum Zitat Deadwyler SA, Hampson RE, Mu J, Whyte A, Childers S (1995) Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 273(2):734–743PubMed Deadwyler SA, Hampson RE, Mu J, Whyte A, Childers S (1995) Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 273(2):734–743PubMed
Zurück zum Zitat Deutsch DG, Goligorsky MS, Schmid PC, Krebsbach RJ, Schmid HH, Das SK, Dey SK, Arreaza G, Thorup C, Stefano G, Moore LC (1997) Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Invest 100(6):1538–1546. doi:10.1172/JCI119677 PubMedCrossRef Deutsch DG, Goligorsky MS, Schmid PC, Krebsbach RJ, Schmid HH, Das SK, Dey SK, Arreaza G, Thorup C, Stefano G, Moore LC (1997) Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Invest 100(6):1538–1546. doi:10.​1172/​JCI119677 PubMedCrossRef
Zurück zum Zitat Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372(6507):686–691. doi:10.1038/372686a0 PubMedCrossRef Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372(6507):686–691. doi:10.​1038/​372686a0 PubMedCrossRef
Zurück zum Zitat Di Marzo V, De Petrocellis L, Sepe N, Buono A (1996) Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 316(Pt 3):977–984PubMed Di Marzo V, De Petrocellis L, Sepe N, Buono A (1996) Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 316(Pt 3):977–984PubMed
Zurück zum Zitat Di Marzo V, Melck D, Bisogno T, De Petrocellis L (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21(12):521–528. pii:S0166-2236(98)01283-1PubMedCrossRef Di Marzo V, Melck D, Bisogno T, De Petrocellis L (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21(12):521–528. pii:S0166-2236(98)01283-1PubMedCrossRef
Zurück zum Zitat Di Marzo V, De Petrocellis L, Bisogno T, Melck D (1999) Metabolism of anandamide and 2-arachidonoylglycerol: an historical overview and some recent developments. Lipids 34(Suppl):S319–S325PubMedCrossRef Di Marzo V, De Petrocellis L, Bisogno T, Melck D (1999) Metabolism of anandamide and 2-arachidonoylglycerol: an historical overview and some recent developments. Lipids 34(Suppl):S319–S325PubMedCrossRef
Zurück zum Zitat Dinh TP, Freund TF, Piomelli D (2002) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 121(1–2):149–158. pii:S0009308402001500PubMedCrossRef Dinh TP, Freund TF, Piomelli D (2002) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 121(1–2):149–158. pii:S0009308402001500PubMedCrossRef
Zurück zum Zitat Dinis P, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24(50):11253–11263PubMedCrossRef Dinis P, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24(50):11253–11263PubMedCrossRef
Zurück zum Zitat Ellington HC, Cotter MA, Cameron NE, Ross RA (2002) The effect of cannabinoids on capsaicin-evoked calcitonin gene-related peptide (CGRP) release from the isolated paw skin of diabetic and non-diabetic rats. Neuropharmacology 42(7):966–975. pii:S0028390802000400PubMedCrossRef Ellington HC, Cotter MA, Cameron NE, Ross RA (2002) The effect of cannabinoids on capsaicin-evoked calcitonin gene-related peptide (CGRP) release from the isolated paw skin of diabetic and non-diabetic rats. Neuropharmacology 42(7):966–975. pii:S0028390802000400PubMedCrossRef
Zurück zum Zitat Fischbach T, Greffrath W, Nawrath H, Treede RD (2007) Effects of anandamide and noxious heat on intracellular calcium concentration in nociceptive DRG neurons of rats. J Neurophysiol 98(2):929–938. doi:10.1152/jn.01096.2006 PubMedCrossRef Fischbach T, Greffrath W, Nawrath H, Treede RD (2007) Effects of anandamide and noxious heat on intracellular calcium concentration in nociceptive DRG neurons of rats. J Neurophysiol 98(2):929–938. doi:10.​1152/​jn.​01096.​2006 PubMedCrossRef
Zurück zum Zitat Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF (2009) Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm 116(8):923–939. doi:10.1007/s00702-008-0174-9 PubMedCrossRef Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF (2009) Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm 116(8):923–939. doi:10.​1007/​s00702-008-0174-9 PubMedCrossRef
Zurück zum Zitat Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, Mark L, Piesla MJ, Deng K, Kouranova EV, Ring RH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30(6):2017–2024. doi:10.1523/JNEUROSCI.5693-09.2010 PubMedCrossRef Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, Mark L, Piesla MJ, Deng K, Kouranova EV, Ring RH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30(6):2017–2024. doi:10.​1523/​JNEUROSCI.​5693-09.​2010 PubMedCrossRef
Zurück zum Zitat Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE (2009) Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 181(4):1939–1948PubMedCrossRef Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE (2009) Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 181(4):1939–1948PubMedCrossRef
Zurück zum Zitat Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, Alexander SP, Kendall D, Michael GJ, Chapman V (2009) Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain 5:35. doi:10.1186/1744-8069-5-35 PubMedCrossRef Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, Alexander SP, Kendall D, Michael GJ, Chapman V (2009) Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain 5:35. doi:10.​1186/​1744-8069-5-35 PubMedCrossRef
Zurück zum Zitat Hayn MH, Ballesteros I, de Miguel F, Coyle CH, Tyagi S, Yoshimura N, Chancellor MB, Tyagi P (2008a) Functional and immunohistochemical characterization of CB1 and CB2 receptors in rat bladder. Urology 72(5):1174–1178PubMedCrossRef Hayn MH, Ballesteros I, de Miguel F, Coyle CH, Tyagi S, Yoshimura N, Chancellor MB, Tyagi P (2008a) Functional and immunohistochemical characterization of CB1 and CB2 receptors in rat bladder. Urology 72(5):1174–1178PubMedCrossRef
Zurück zum Zitat Hoffman AF, Riegel AC, Lupica CR (2003) Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. Eur J Neurosci 18(3):524–534. pii: 2773PubMedCrossRef Hoffman AF, Riegel AC, Lupica CR (2003) Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. Eur J Neurosci 18(3):524–534. pii: 2773PubMedCrossRef
Zurück zum Zitat Hohmann AG (2002) Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. Chem Phys Lipids 121(1–2):173–190 pii: S0009308402001548PubMedCrossRef Hohmann AG (2002) Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. Chem Phys Lipids 121(1–2):173–190 pii: S0009308402001548PubMedCrossRef
Zurück zum Zitat Hohmann AG, Herkenham M (1999) Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 90(3):923–931 pii:S0306-4522(98)00524-7PubMedCrossRef Hohmann AG, Herkenham M (1999) Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 90(3):923–931 pii:S0306-4522(98)00524-7PubMedCrossRef
Zurück zum Zitat Hohmann AG, Tsou K, Walker JM (1998) Cannabinoid modulation of wide dynamic range neurons in the lumbar dorsal horn of the rat by spinally administered WIN55,212-2. Neurosci Lett 257(3):119–122 pii: S0304394098008027PubMedCrossRef Hohmann AG, Tsou K, Walker JM (1998) Cannabinoid modulation of wide dynamic range neurons in the lumbar dorsal horn of the rat by spinally administered WIN55,212-2. Neurosci Lett 257(3):119–122 pii: S0304394098008027PubMedCrossRef
Zurück zum Zitat Hohmann AG, Briley EM, Herkenham M (1999) Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 822(1–2):17–25 pii: S0006-8993(98)01321-3PubMedCrossRef Hohmann AG, Briley EM, Herkenham M (1999) Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 822(1–2):17–25 pii: S0006-8993(98)01321-3PubMedCrossRef
Zurück zum Zitat Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202PubMedCrossRef Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202PubMedCrossRef
Zurück zum Zitat Jaggar SI, Hasnie FS, Sellaturay S, Rice AS (1998) The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 76(1–2):189–199 pii: S0304-3959(98)00041-4PubMedCrossRef Jaggar SI, Hasnie FS, Sellaturay S, Rice AS (1998) The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 76(1–2):189–199 pii: S0304-3959(98)00041-4PubMedCrossRef
Zurück zum Zitat Jennings EA, Vaughan CW, Christie MJ (2001) Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro. J Physiol 534(Pt 3):805–812PubMedCrossRef Jennings EA, Vaughan CW, Christie MJ (2001) Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro. J Physiol 534(Pt 3):805–812PubMedCrossRef
Zurück zum Zitat Khasabova IA, Simone DA, Seybold VS (2002) Cannabinoids attenuate depolarization-dependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats. Neuroscience 115(2):613–625. pii:S0306452202004499PubMedCrossRef Khasabova IA, Simone DA, Seybold VS (2002) Cannabinoids attenuate depolarization-dependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats. Neuroscience 115(2):613–625. pii:S0306452202004499PubMedCrossRef
Zurück zum Zitat Khasabova IA, Khasabov SG, Harding-Rose C, Coicou LG, Seybold BA, Lindberg AE, Steevens CD, Simone DA, Seybold VS (2008) A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J Neurosci 28(44):11141–11152. doi:10.1523/JNEUROSCI.2847-08.2008 PubMedCrossRef Khasabova IA, Khasabov SG, Harding-Rose C, Coicou LG, Seybold BA, Lindberg AE, Steevens CD, Simone DA, Seybold VS (2008) A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J Neurosci 28(44):11141–11152. doi:10.​1523/​JNEUROSCI.​2847-08.​2008 PubMedCrossRef
Zurück zum Zitat Kreitzer AC, Regehr WG (2002) Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 12(3):324–330 (pii:S0959438802003288)PubMedCrossRef Kreitzer AC, Regehr WG (2002) Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 12(3):324–330 (pii:S0959438802003288)PubMedCrossRef
Zurück zum Zitat Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105(7):2699–2704. doi:10.1073/pnas.0711278105 PubMedCrossRef Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105(7):2699–2704. doi:10.​1073/​pnas.​0711278105 PubMedCrossRef
Zurück zum Zitat Lawson SN, Crepps B, Perl ER (2002) Calcitonin gene-related peptide immunoreactivity and afferent receptive properties of dorsal root ganglion neurones in guinea-pigs. J Physiol 540(Pt 3):989–1002PubMedCrossRef Lawson SN, Crepps B, Perl ER (2002) Calcitonin gene-related peptide immunoreactivity and afferent receptive properties of dorsal root ganglion neurones in guinea-pigs. J Physiol 540(Pt 3):989–1002PubMedCrossRef
Zurück zum Zitat Lever IJ, Robinson M, Cibelli M, Paule C, Santha P, Yee L, Hunt SP, Cravatt BF, Elphick MR, Nagy I, Rice ASC (2009) Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J Neurosci 29(12):3766–3780PubMedCrossRef Lever IJ, Robinson M, Cibelli M, Paule C, Santha P, Yee L, Hunt SP, Cravatt BF, Elphick MR, Nagy I, Rice ASC (2009) Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J Neurosci 29(12):3766–3780PubMedCrossRef
Zurück zum Zitat Ligresti A, Cascio MG, Di Marzo V (2005) Endocannabinoid metabolic pathways and enzymes. Curr Drug Targets CNS Neurol Disord 4(6):615–623PubMedCrossRef Ligresti A, Cascio MG, Di Marzo V (2005) Endocannabinoid metabolic pathways and enzymes. Curr Drug Targets CNS Neurol Disord 4(6):615–623PubMedCrossRef
Zurück zum Zitat Maccarrone M, DiRienzo M, Battista N, Gasperi V, Guerrieri P, Rossi A, Finazzi-Agro A (2003) The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 278(36):33896–33903. doi:10.1074/jbc.M303994200 PubMedCrossRef Maccarrone M, DiRienzo M, Battista N, Gasperi V, Guerrieri P, Rossi A, Finazzi-Agro A (2003) The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 278(36):33896–33903. doi:10.​1074/​jbc.​M303994200 PubMedCrossRef
Zurück zum Zitat Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325PubMedCrossRef Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325PubMedCrossRef
Zurück zum Zitat Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 89(9):3825–3829PubMedCrossRef Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 89(9):3825–3829PubMedCrossRef
Zurück zum Zitat Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15(10):6552–6561PubMed Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15(10):6552–6561PubMed
Zurück zum Zitat Maggi CA, Santicioli P, Geppetti P, Furio M, Frilli S, Conte B, Fanciullacci M, Giuliani S, Meli A (1987) The contribution of capsaicin-sensitive innervation to activation of the spinal vesico-vesical reflex in rats: relationship between substance P levels in the urinary bladder and the sensory-efferent function of capsaicin-sensitive sensory neurons. Brain Res 415(1):1–13 pii:0006-8993(87)90263-0PubMedCrossRef Maggi CA, Santicioli P, Geppetti P, Furio M, Frilli S, Conte B, Fanciullacci M, Giuliani S, Meli A (1987) The contribution of capsaicin-sensitive innervation to activation of the spinal vesico-vesical reflex in rats: relationship between substance P levels in the urinary bladder and the sensory-efferent function of capsaicin-sensitive sensory neurons. Brain Res 415(1):1–13 pii:0006-8993(87)90263-0PubMedCrossRef
Zurück zum Zitat Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48(3):655–668 (pii:0306-4522(92)90409-U)PubMedCrossRef Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48(3):655–668 (pii:0306-4522(92)90409-U)PubMedCrossRef
Zurück zum Zitat Martin WJ, Lai NK, Patrick SL, Tsou K, Walker JM (1993) Antinociceptive actions of cannabinoids following intraventricular administration in rats. Brain Res 629(2):300–304 (pii:0006-8993(93)91334-O)PubMedCrossRef Martin WJ, Lai NK, Patrick SL, Tsou K, Walker JM (1993) Antinociceptive actions of cannabinoids following intraventricular administration in rats. Brain Res 629(2):300–304 (pii:0006-8993(93)91334-O)PubMedCrossRef
Zurück zum Zitat Martin WJ, Patrick SL, Coffin PO, Tsou K, Walker JM (1995) An examination of the central sites of action of cannabinoid-induced antinociception in the rat. Life Sci 56(23–24):2103–2109PubMedCrossRef Martin WJ, Patrick SL, Coffin PO, Tsou K, Walker JM (1995) An examination of the central sites of action of cannabinoid-induced antinociception in the rat. Life Sci 56(23–24):2103–2109PubMedCrossRef
Zurück zum Zitat Martini L, Thompson D, Kharazia V, Whistler JL (2010) Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology. Neuropsychopharmacology 35(6):1363–1373. doi:10.1038/npp2010.6 PubMedCrossRef Martini L, Thompson D, Kharazia V, Whistler JL (2010) Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology. Neuropsychopharmacology 35(6):1363–1373. doi:10.​1038/​npp2010.​6 PubMedCrossRef
Zurück zum Zitat Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564. doi:10.1038/346561a0 PubMedCrossRef Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564. doi:10.​1038/​346561a0 PubMedCrossRef
Zurück zum Zitat Merriam FV, Wang ZY, Guerios SD, Bjorling DE (2008) Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats. Neurosci Lett 445(1):130–134PubMedCrossRef Merriam FV, Wang ZY, Guerios SD, Bjorling DE (2008) Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats. Neurosci Lett 445(1):130–134PubMedCrossRef
Zurück zum Zitat Mitrirattanakul S, Ramakul N, Guerrero AV, Matsuka Y, Ono T, Iwase H, Mackie K, Faull KF, Spigelman I (2006) Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 126(1–3):102–114. doi:10.1016/j.pain.2006.06.016 PubMedCrossRef Mitrirattanakul S, Ramakul N, Guerrero AV, Matsuka Y, Ono T, Iwase H, Mackie K, Faull KF, Spigelman I (2006) Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 126(1–3):102–114. doi:10.​1016/​j.​pain.​2006.​06.​016 PubMedCrossRef
Zurück zum Zitat Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wolfel B, Dodt HU, Zieglgansberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–466. doi:10.1016/j.neuron.2006.07.006 PubMedCrossRef Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wolfel B, Dodt HU, Zieglgansberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–466. doi:10.​1016/​j.​neuron.​2006.​07.​006 PubMedCrossRef
Zurück zum Zitat Morisset V, Urban L (2001) Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol 86(1):40–48PubMed Morisset V, Urban L (2001) Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol 86(1):40–48PubMed
Zurück zum Zitat Morisset V, Ahluwalia J, Nagy I, Urban L (2001) Possible mechanisms of cannabinoid-induced antinociception in the spinal cord. Eur J Pharmacol 429(1–3):93–100. pii: S0014299901013097PubMedCrossRef Morisset V, Ahluwalia J, Nagy I, Urban L (2001) Possible mechanisms of cannabinoid-induced antinociception in the spinal cord. Eur J Pharmacol 429(1–3):93–100. pii: S0014299901013097PubMedCrossRef
Zurück zum Zitat Ong WY, Mackie K (1999) A light and electron microscopic study of the CB1 cannabinoid receptor in the primate spinal cord. J Neurocytol 28(1):39–45PubMedCrossRef Ong WY, Mackie K (1999) A light and electron microscopic study of the CB1 cannabinoid receptor in the primate spinal cord. J Neurocytol 28(1):39–45PubMedCrossRef
Zurück zum Zitat Pernia-Andrade AJ, Kato A, Witschi R, Nyilas R, Katona I, Freund TF, Watanabe M, Filitz J, Koppert W, Schuttler J, Ji G, Neugebauer V, Marsicano G, Lutz B, Vanegas H, Zeilhofer HU (2009) Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science 325(5941):760–764. doi:10.1126/science.1171870 PubMedCrossRef Pernia-Andrade AJ, Kato A, Witschi R, Nyilas R, Katona I, Freund TF, Watanabe M, Filitz J, Koppert W, Schuttler J, Ji G, Neugebauer V, Marsicano G, Lutz B, Vanegas H, Zeilhofer HU (2009) Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science 325(5941):760–764. doi:10.​1126/​science.​1171870 PubMedCrossRef
Zurück zum Zitat Perry MJ, Lawson SN (1993) Neurofilaments in rat and cat spinal cord: a comparative immunocytochemical study of phosphorylated and non-phosphorylated subunits. Cell Tissue Res 272(2):249–256PubMedCrossRef Perry MJ, Lawson SN (1993) Neurofilaments in rat and cat spinal cord: a comparative immunocytochemical study of phosphorylated and non-phosphorylated subunits. Cell Tissue Res 272(2):249–256PubMedCrossRef
Zurück zum Zitat Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63(5):569–611. pii: S0301-0082(00)00031-9PubMedCrossRef Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63(5):569–611. pii: S0301-0082(00)00031-9PubMedCrossRef
Zurück zum Zitat Plenderleith MB, Snow PJ (1993) The plant lectin Bandeiraea simplicifolia I-B4 identifies a subpopulation of small diameter primary sensory neurones which innervate the skin in the rat. Neurosci Lett 159(1–2):17–20PubMedCrossRef Plenderleith MB, Snow PJ (1993) The plant lectin Bandeiraea simplicifolia I-B4 identifies a subpopulation of small diameter primary sensory neurones which innervate the skin in the rat. Neurosci Lett 159(1–2):17–20PubMedCrossRef
Zurück zum Zitat Price J (1985) An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. J Neurosci 5(8):2051–2059PubMed Price J (1985) An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. J Neurosci 5(8):2051–2059PubMed
Zurück zum Zitat Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120(1):155–162. pii: S0306452203003336PubMedCrossRef Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120(1):155–162. pii: S0306452203003336PubMedCrossRef
Zurück zum Zitat Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12(9):1152–1158. doi:10.1038/nn.2369 PubMedCrossRef Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12(9):1152–1158. doi:10.​1038/​nn.​2369 PubMedCrossRef
Zurück zum Zitat Richardson JD, Aanonsen L, Hargreaves KM (1998a) Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol 345(2):145–153. pii: S0014-2999(97)01621-XPubMedCrossRef Richardson JD, Aanonsen L, Hargreaves KM (1998a) Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol 345(2):145–153. pii: S0014-2999(97)01621-XPubMedCrossRef
Zurück zum Zitat Richardson JD, Kilo S, Hargreaves KM (1998b) Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75(1):111–119. pii:S0304395997002133PubMedCrossRef Richardson JD, Kilo S, Hargreaves KM (1998b) Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75(1):111–119. pii:S0304395997002133PubMedCrossRef
Zurück zum Zitat Salio C, Fischer J, Franzoni MF, Mackie K, Kaneko T, Conrath M (2001) CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. NeuroReport 12(17):3689–3692PubMedCrossRef Salio C, Fischer J, Franzoni MF, Mackie K, Kaneko T, Conrath M (2001) CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. NeuroReport 12(17):3689–3692PubMedCrossRef
Zurück zum Zitat Salio C, Fischer J, Franzoni MF, Conrath M (2002) Pre- and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience 110(4):755–764. pii:S030645220100584XPubMedCrossRef Salio C, Fischer J, Franzoni MF, Conrath M (2002) Pre- and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience 110(4):755–764. pii:S030645220100584XPubMedCrossRef
Zurück zum Zitat Santha P, Jenes A, Somogyi C, Nagy I (2010a) The endogenous cannabinoid anandamide inhibits transient receptor potential vanilloid type 1 receptor-mediated currents in rat cultured primary sensory neurons. Acta Physiol Hung 97(2):149–158. doi:10.1556/APhysiol.97.2010.2.1 PubMedCrossRef Santha P, Jenes A, Somogyi C, Nagy I (2010a) The endogenous cannabinoid anandamide inhibits transient receptor potential vanilloid type 1 receptor-mediated currents in rat cultured primary sensory neurons. Acta Physiol Hung 97(2):149–158. doi:10.​1556/​APhysiol.​97.​2010.​2.​1 PubMedCrossRef
Zurück zum Zitat Santha P, Oszlacs O, Dux M, Dobos I, Jancso G (2010b) Inhibition of glucosylceramide synthase reversibly decreases the capsaicin-induced activation and TRPV1 expression of cultured dorsal root ganglion neurons. Pain. doi:10.1016/j.pain.2010.04.006 Santha P, Oszlacs O, Dux M, Dobos I, Jancso G (2010b) Inhibition of glucosylceramide synthase reversibly decreases the capsaicin-induced activation and TRPV1 expression of cultured dorsal root ganglion neurons. Pain. doi:10.​1016/​j.​pain.​2010.​04.​006
Zurück zum Zitat Sanudo-Pena MC, Strangman NM, Mackie K, Walker JM, Tsou K (1999) CB1 receptor localization in rat spinal cord and roots, dorsal root ganglion, and peripheral nerve. Zhongguo Yao Li Xue Bao 20(12):1115–1120PubMed Sanudo-Pena MC, Strangman NM, Mackie K, Walker JM, Tsou K (1999) CB1 receptor localization in rat spinal cord and roots, dorsal root ganglion, and peripheral nerve. Zhongguo Yao Li Xue Bao 20(12):1115–1120PubMed
Zurück zum Zitat Silverman JD, Kruger L (1988) Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated “nociceptor” thin axons in rat testis and cornea whole-mount preparations. Somatosens Res 5(3):259–267PubMedCrossRef Silverman JD, Kruger L (1988) Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated “nociceptor” thin axons in rat testis and cornea whole-mount preparations. Somatosens Res 5(3):259–267PubMedCrossRef
Zurück zum Zitat Soneji ND, Paule CC, Mlynarczyk M, Nagy I (2010) Effects of cannabinoids on capsaicin receptor activity following exposure of primary sensory neurons to inflammatory mediators. Life Sci 87 (5–6):162–168. doi:10.1016/j.lfs.2010.06.003 Soneji ND, Paule CC, Mlynarczyk M, Nagy I (2010) Effects of cannabinoids on capsaicin receptor activity following exposure of primary sensory neurons to inflammatory mediators. Life Sci 87 (5–6):162–168. doi:10.​1016/​j.​lfs.​2010.​06.​003
Zurück zum Zitat Song C, Howlett AC (1995) Rat brain cannabinoid receptors are N-linked glycosylated proteins. Life Sci 56(23–24):1983–1989PubMedCrossRef Song C, Howlett AC (1995) Rat brain cannabinoid receptors are N-linked glycosylated proteins. Life Sci 56(23–24):1983–1989PubMedCrossRef
Zurück zum Zitat Spradley JM, Guindon J, Hohmann AG (2010) Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms. Pharmacol Res 62(3):249–258. doi:10.1016/j.phrs.2010.03.007 PubMedCrossRef Spradley JM, Guindon J, Hohmann AG (2010) Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms. Pharmacol Res 62(3):249–258. doi:10.​1016/​j.​phrs.​2010.​03.​007 PubMedCrossRef
Zurück zum Zitat Szabo B, Urbanski MJ, Bisogno T, Di Marzo V, Mendiguren A, Baer WU, Freiman I (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577(Pt 1):263–280. doi:10.1113/jphysiol.2006.119362 PubMedCrossRef Szabo B, Urbanski MJ, Bisogno T, Di Marzo V, Mendiguren A, Baer WU, Freiman I (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577(Pt 1):263–280. doi:10.​1113/​jphysiol.​2006.​119362 PubMedCrossRef
Zurück zum Zitat Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65 (3):320–327. doi:10.1016/j.neuron.2010.01.021 Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65 (3):320–327. doi:10.​1016/​j.​neuron.​2010.​01.​021
Zurück zum Zitat Twitchell W, Brown S, Mackie K (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 78(1):43–50PubMed Twitchell W, Brown S, Mackie K (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 78(1):43–50PubMed
Zurück zum Zitat Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, Yoshimura N, Tyagi P (2009) Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 181(4):1932–1938PubMedCrossRef Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, Yoshimura N, Tyagi P (2009) Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 181(4):1932–1938PubMedCrossRef
Zurück zum Zitat Walczak JS, Price TJ, Cervero F (2009) Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. Neuroscience 159(3):1154–1163PubMedCrossRef Walczak JS, Price TJ, Cervero F (2009) Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. Neuroscience 159(3):1154–1163PubMedCrossRef
Zurück zum Zitat Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63(3):637–652. pii:0306-4522(94)90511-8PubMedCrossRef Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63(3):637–652. pii:0306-4522(94)90511-8PubMedCrossRef
Metadaten
Titel
Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons
verfasst von
Gabor Veress
Zoltan Meszar
Dora Muszil
Antonio Avelino
Klara Matesz
Ken Mackie
Istvan Nagy
Publikationsdatum
01.05.2013
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 3/2013
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-012-0425-2

Weitere Artikel der Ausgabe 3/2013

Brain Structure and Function 3/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.