Skip to main content
Erschienen in: Brain Structure and Function 2/2014

01.03.2014 | Original Article

Crosslinking EEG time–frequency decomposition and fMRI in error monitoring

verfasst von: Sven Hoffmann, Franziska Labrenz, Maria Themann, Edmund Wascher, Christian Beste

Erschienen in: Brain Structure and Function | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time–frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time–frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.
Fußnoten
1
Here, all extracted frequency bands from the sLORETA analysis were tested separately. Note that as described in the “Methods” section that bootstrap tests were conducted. These bootstrapped the whole data matrix, thus Type I errors can be controlled.
 
Literatur
Zurück zum Zitat Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239PubMedCrossRef Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239PubMedCrossRef
Zurück zum Zitat Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239PubMedCrossRef Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239PubMedCrossRef
Zurück zum Zitat Amari SI (1998) Natural Gradient Works Efficiently in Learning. Neural Comput 10:251–276CrossRef Amari SI (1998) Natural Gradient Works Efficiently in Learning. Neural Comput 10:251–276CrossRef
Zurück zum Zitat Beste C, Saft C, Yordanova J, Andrich J, Gold R, Falkenstein M, Kolev V (2007) Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington’s disease? Neuropsychologia 45:2922–2930PubMedCrossRef Beste C, Saft C, Yordanova J, Andrich J, Gold R, Falkenstein M, Kolev V (2007) Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington’s disease? Neuropsychologia 45:2922–2930PubMedCrossRef
Zurück zum Zitat Beste C, Saft C, Konrad C, Andrich J, Habbel A, Schepers I, Jansen A, Pfleiderer B, Falkenstein M (2008) Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum Brain Mapp 29:121–130PubMedCrossRef Beste C, Saft C, Konrad C, Andrich J, Habbel A, Schepers I, Jansen A, Pfleiderer B, Falkenstein M (2008) Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum Brain Mapp 29:121–130PubMedCrossRef
Zurück zum Zitat Beste C, Willemssen R, Saft C, Falkenstein M (2009) Error processing in normal aging and in basal ganglia disorders. Neuroscience 159:143–149PubMedCrossRef Beste C, Willemssen R, Saft C, Falkenstein M (2009) Error processing in normal aging and in basal ganglia disorders. Neuroscience 159:143–149PubMedCrossRef
Zurück zum Zitat Beste C, Baune BT, Domschke K, Falkenstein M, Konrad C (2010a) Dissociable influences of NR2B-receptor related neural transmission on functions of distinct associative basal ganglia circuits. Neuroimage 52:309–315PubMedCrossRef Beste C, Baune BT, Domschke K, Falkenstein M, Konrad C (2010a) Dissociable influences of NR2B-receptor related neural transmission on functions of distinct associative basal ganglia circuits. Neuroimage 52:309–315PubMedCrossRef
Zurück zum Zitat Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C (2010b) Functional 5-HT1a receptor polymorphism selectively modulates error- specific subprocesses of performance monitoring. Hum Brain Mapp 31:621–630PubMed Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C (2010b) Functional 5-HT1a receptor polymorphism selectively modulates error- specific subprocesses of performance monitoring. Hum Brain Mapp 31:621–630PubMed
Zurück zum Zitat Beste C, Kolev V, Yordanova J, Domschke K, Falkenstein M, Baune BT, Konrad C (2010c) The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. J Neurosci 30:10727–10733PubMedCrossRef Beste C, Kolev V, Yordanova J, Domschke K, Falkenstein M, Baune BT, Konrad C (2010c) The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. J Neurosci 30:10727–10733PubMedCrossRef
Zurück zum Zitat Beste C, Güntürkün O, Baune BT, Domschke K, Falkenstein M, Konrad C (2011) Double dissociated effects of the functional TNF-alpha -308G/A polymorphism on processes of cognitive control. Neuropsychologia 49:196–202PubMedCrossRef Beste C, Güntürkün O, Baune BT, Domschke K, Falkenstein M, Konrad C (2011) Double dissociated effects of the functional TNF-alpha -308G/A polymorphism on processes of cognitive control. Neuropsychologia 49:196–202PubMedCrossRef
Zurück zum Zitat Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. International Conference on Functional Mapping of the Human Brain, Sendai Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. International Conference on Functional Mapping of the Human Brain, Sendai
Zurück zum Zitat Briselli E, Garreffa G, Bianchi L, Bianciardi M, Macaluso E, Abbafati M, Marciani MG, Maraviglia B (2006) An independent component analysis-based approach on ballistocardiogram artifact removing. Magn Reson Imaging 24:393–400PubMedCrossRef Briselli E, Garreffa G, Bianchi L, Bianciardi M, Macaluso E, Abbafati M, Marciani MG, Maraviglia B (2006) An independent component analysis-based approach on ballistocardiogram artifact removing. Magn Reson Imaging 24:393–400PubMedCrossRef
Zurück zum Zitat Brookings T, Ortigue S, Grafton S, Carlson J (2009) Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. Neuroimage 44:411–420PubMedCrossRef Brookings T, Ortigue S, Grafton S, Carlson J (2009) Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. Neuroimage 44:411–420PubMedCrossRef
Zurück zum Zitat Cavanagh JF, Cohen MX, Allen JJ (2009) Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. J Neurosci 29(1):98–105PubMedCentralPubMedCrossRef Cavanagh JF, Cohen MX, Allen JJ (2009) Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. J Neurosci 29(1):98–105PubMedCentralPubMedCrossRef
Zurück zum Zitat Cavanagh JF, Zambrano-Vazquez L, Allen JJ (2012) Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology 49(2):220–238PubMedCentralPubMedCrossRef Cavanagh JF, Zambrano-Vazquez L, Allen JJ (2012) Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology 49(2):220–238PubMedCentralPubMedCrossRef
Zurück zum Zitat Cohen MX (2011) Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage 55(3):1373–1383PubMedCrossRef Cohen MX (2011) Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage 55(3):1373–1383PubMedCrossRef
Zurück zum Zitat Comon P (1994) Independent component analysis—a new concept? Signal Process 36:287–314CrossRef Comon P (1994) Independent component analysis—a new concept? Signal Process 36:287–314CrossRef
Zurück zum Zitat Dammers J, Schiek M, Boers F, Silex C, Zvyagintsev M, Pietrzyk U, Mathiak K (2008) Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE Trans Biomed Eng 55(10):2353–2362PubMedCrossRef Dammers J, Schiek M, Boers F, Silex C, Zvyagintsev M, Pietrzyk U, Mathiak K (2008) Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE Trans Biomed Eng 55(10):2353–2362PubMedCrossRef
Zurück zum Zitat Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737PubMedCrossRef Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737PubMedCrossRef
Zurück zum Zitat Dehaene S, Posner M, Tucker DM (1994) Localization of an neural system for error detection and compensation. Psychol Sci 5:303–305CrossRef Dehaene S, Posner M, Tucker DM (1994) Localization of an neural system for error detection and compensation. Psychol Sci 5:303–305CrossRef
Zurück zum Zitat Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Method 134:9–21CrossRef Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Method 134:9–21CrossRef
Zurück zum Zitat Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, New YorkCrossRef Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, New YorkCrossRef
Zurück zum Zitat Falkenstein M, Hohnsbein J, Hoomann J, Blanke L (1990) Psychophysiological Brain Research. In: Brunia CHM, Gaillard AWK, Kok A (eds) Tilburg University Press, Tilburg, pp 192–195 Falkenstein M, Hohnsbein J, Hoomann J, Blanke L (1990) Psychophysiological Brain Research. In: Brunia CHM, Gaillard AWK, Kok A (eds) Tilburg University Press, Tilburg, pp 192–195
Zurück zum Zitat Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390CrossRef Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390CrossRef
Zurück zum Zitat Heil M (2002) The functional significance of ERP effects during mental rotation. Psychophysiology 39:535–545PubMedCrossRef Heil M (2002) The functional significance of ERP effects during mental rotation. Psychophysiology 39:535–545PubMedCrossRef
Zurück zum Zitat Heil M, Wahl K, Herbst M (1999) Mental rotation, memory scanning, and the central bottleneck. Psychol Res 62:48–61PubMedCrossRef Heil M, Wahl K, Herbst M (1999) Mental rotation, memory scanning, and the central bottleneck. Psychol Res 62:48–61PubMedCrossRef
Zurück zum Zitat Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H (2005) Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27:602–608PubMedCrossRef Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H (2005) Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27:602–608PubMedCrossRef
Zurück zum Zitat Hoffmann S, Falkenstein M (2010) Independent component analysis of erroneous and correct responses suggests online response control. Hum Brain Mapp 31:1305–1315PubMedCrossRef Hoffmann S, Falkenstein M (2010) Independent component analysis of erroneous and correct responses suggests online response control. Hum Brain Mapp 31:1305–1315PubMedCrossRef
Zurück zum Zitat Hoffmann S, Falkenstein M (2011) Aging and error processing: age related increase in the variability of the error-negativity is not accompanied by increase in response variability. PLoS One 6:e17482PubMedCentralPubMedCrossRef Hoffmann S, Falkenstein M (2011) Aging and error processing: age related increase in the variability of the error-negativity is not accompanied by increase in response variability. PLoS One 6:e17482PubMedCentralPubMedCrossRef
Zurück zum Zitat Hoffmann S, Wascher E (2012) Spatial cueing modulates the monitoring of correct responses. Neurosci Lett 506:225–228PubMedCrossRef Hoffmann S, Wascher E (2012) Spatial cueing modulates the monitoring of correct responses. Neurosci Lett 506:225–228PubMedCrossRef
Zurück zum Zitat Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRef Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRef
Zurück zum Zitat Huiskamp GJM (2005) Reduction of the Ballistocardiogram Artifact in Simultaneous EEG-fMRI using ICA. Conf Proc IEEE Eng Med Biol Soc 4:3691–3694PubMed Huiskamp GJM (2005) Reduction of the Ballistocardiogram Artifact in Simultaneous EEG-fMRI using ICA. Conf Proc IEEE Eng Med Biol Soc 4:3691–3694PubMed
Zurück zum Zitat Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, Iragui V, Sejnowski T (1998) Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems. MIT Press, Cambridge Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, Iragui V, Sejnowski T (1998) Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems. MIT Press, Cambridge
Zurück zum Zitat Jung TP, Makeig S, McKeown MJ, Bell AJ, Lee TW, Sejnowski TJ (2001) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122CrossRef Jung TP, Makeig S, McKeown MJ, Bell AJ, Lee TW, Sejnowski TJ (2001) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122CrossRef
Zurück zum Zitat Keil J, Weisz N, Paul-Jordanov I, Wienbruch C (2010) Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity. Neuroimage 51(404):411 Keil J, Weisz N, Paul-Jordanov I, Wienbruch C (2010) Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity. Neuroimage 51(404):411
Zurück zum Zitat Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M (2007) Neural correlates of error awareness. Neuroimage 34:1774–1781PubMedCrossRef Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M (2007) Neural correlates of error awareness. Neuroimage 34:1774–1781PubMedCrossRef
Zurück zum Zitat Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11:417–441PubMedCrossRef Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11:417–441PubMedCrossRef
Zurück zum Zitat Lee JH, Oh S, Jolesz FA, Park H, Yoo SS (2009) Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset. Int J Neurosci 119:1118–1136PubMedCentralPubMedCrossRef Lee JH, Oh S, Jolesz FA, Park H, Yoo SS (2009) Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset. Int J Neurosci 119:1118–1136PubMedCentralPubMedCrossRef
Zurück zum Zitat Li Y, Ma Z, Lu W, Li Y (2006) Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiol Meas 27(4):425–436PubMedCrossRef Li Y, Ma Z, Lu W, Li Y (2006) Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiol Meas 27(4):425–436PubMedCrossRef
Zurück zum Zitat Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41:377–388PubMedCrossRef Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41:377–388PubMedCrossRef
Zurück zum Zitat Luu P, Tucker DM (2001) Regulating action: alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol 112(7):1295–1306PubMedCrossRef Luu P, Tucker DM (2001) Regulating action: alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol 112(7):1295–1306PubMedCrossRef
Zurück zum Zitat Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115(8):1821–1835PubMedCrossRef Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115(8):1821–1835PubMedCrossRef
Zurück zum Zitat Maier ME, Yeung N, Steinhauser M (2011) Error-related brain activity and adjustments of selective attention following errors. Neuroimage 56(4):2339–2347PubMedCrossRef Maier ME, Yeung N, Steinhauser M (2011) Error-related brain activity and adjustments of selective attention following errors. Neuroimage 56(4):2339–2347PubMedCrossRef
Zurück zum Zitat Mallet S (1999) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE 7:674–693 Mallet S (1999) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE 7:674–693
Zurück zum Zitat Marques JP, Rebola J, Figueiredo P, Pinto A, Sales F, Castelo-Branco M (2009) ICA decomposition of EEG signal for fMRI processing in epilepsy. Hum Brain Mapp 30:2986–2996PubMedCrossRef Marques JP, Rebola J, Figueiredo P, Pinto A, Sales F, Castelo-Branco M (2009) ICA decomposition of EEG signal for fMRI processing in epilepsy. Hum Brain Mapp 30:2986–2996PubMedCrossRef
Zurück zum Zitat Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111:22–41PubMedCrossRef Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111:22–41PubMedCrossRef
Zurück zum Zitat Michels L, Lüchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory. PLoS One 7(7):e39447PubMedCentralPubMedCrossRef Michels L, Lüchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory. PLoS One 7(7):e39447PubMedCentralPubMedCrossRef
Zurück zum Zitat Moosmann M, Schonfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG- fMRI recordings. Neuroimage 45:1144–1150PubMedCrossRef Moosmann M, Schonfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG- fMRI recordings. Neuroimage 45:1144–1150PubMedCrossRef
Zurück zum Zitat Nieuwenhuis S, Ridderinkhof KR, Talsma D, Coles MG, Holroyd CB, Kok A, van der Molen MW (2002) A computational account of altered error processing in older age: dopamine and the error-related negativity. Cogn Affect Behav Neurosci 2:19–36PubMedCrossRef Nieuwenhuis S, Ridderinkhof KR, Talsma D, Coles MG, Holroyd CB, Kok A, van der Molen MW (2002) A computational account of altered error processing in older age: dopamine and the error-related negativity. Cogn Affect Behav Neurosci 2:19–36PubMedCrossRef
Zurück zum Zitat Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515PubMedCrossRef Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515PubMedCrossRef
Zurück zum Zitat Pailing PE, Segalowitz SJ (2004) The effects of uncertainty in error monitoring on associated ERPs. Brain Cogn 56:215–233PubMedCrossRef Pailing PE, Segalowitz SJ (2004) The effects of uncertainty in error monitoring on associated ERPs. Brain Cogn 56:215–233PubMedCrossRef
Zurück zum Zitat Pailing PE, Segalowitz SJ, Dywan J, Davies PL (2002) Error negativity and response control. Psychophysiology 39:198–206PubMedCrossRef Pailing PE, Segalowitz SJ, Dywan J, Davies PL (2002) Error negativity and response control. Psychophysiology 39:198–206PubMedCrossRef
Zurück zum Zitat Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187PubMedCrossRef Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187PubMedCrossRef
Zurück zum Zitat Prime D, Jolicoeur P (2009) Mental rotation requires visual short-term memory: evidence from human electric cortical activity. J Cogn Neurosci 22:2437–2446CrossRef Prime D, Jolicoeur P (2009) Mental rotation requires visual short-term memory: evidence from human electric cortical activity. J Cogn Neurosci 22:2437–2446CrossRef
Zurück zum Zitat Prime D, Dell’Acqua R, Arguin M, Gosselin F, Jolicoeur P (2011) Spatial layout of letters in nonwords affects visual short-term memory load: evidence from human electrophysiology. Psychophysiology 48:430–436PubMedCrossRef Prime D, Dell’Acqua R, Arguin M, Gosselin F, Jolicoeur P (2011) Spatial layout of letters in nonwords affects visual short-term memory load: evidence from human electrophysiology. Psychophysiology 48:430–436PubMedCrossRef
Zurück zum Zitat R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, url: http://www.R-project.org R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, url: http://​www.​R-project.​org
Zurück zum Zitat Rasheed T, Lee YK, Lee SY, Kim TS (2009) Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis. Physiol Meas 30:387–404PubMedCrossRef Rasheed T, Lee YK, Lee SY, Kim TS (2009) Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis. Physiol Meas 30:387–404PubMedCrossRef
Zurück zum Zitat Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347CrossRef Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347CrossRef
Zurück zum Zitat Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447PubMedCrossRef Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447PubMedCrossRef
Zurück zum Zitat Roger C, Benar CG, Vidal F, Hasbroucq T, Burle B (2010) Rostral Cingulate Zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. Neuroimage 51:391–403PubMedCrossRef Roger C, Benar CG, Vidal F, Hasbroucq T, Burle B (2010) Rostral Cingulate Zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. Neuroimage 51:391–403PubMedCrossRef
Zurück zum Zitat Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34:1015–1022PubMedCrossRef Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34:1015–1022PubMedCrossRef
Zurück zum Zitat Scheeringa R, Fries P, Petersson K-M, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MCM (2011) Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583PubMedCrossRef Scheeringa R, Fries P, Petersson K-M, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MCM (2011) Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583PubMedCrossRef
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York
Zurück zum Zitat Trujillo LT, Allen JJB (2007) Theta EEG dynamics of the error-related negativity. Clin Neurophysiol 118(3):645–668PubMedCrossRef Trujillo LT, Allen JJB (2007) Theta EEG dynamics of the error-related negativity. Clin Neurophysiol 118(3):645–668PubMedCrossRef
Zurück zum Zitat Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314PubMed Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314PubMed
Zurück zum Zitat Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214:629–643PubMedCentralPubMedCrossRef Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214:629–643PubMedCentralPubMedCrossRef
Zurück zum Zitat Vidal F, Burle B, Bonnet M, Grapperon J, Hasbroucq T (2003) Error negativity on correct trials: a reexamination of available data. Biol Psychol 64:265–282PubMedCrossRef Vidal F, Burle B, Bonnet M, Grapperon J, Hasbroucq T (2003) Error negativity on correct trials: a reexamination of available data. Biol Psychol 64:265–282PubMedCrossRef
Zurück zum Zitat Wascher E, Reinhard M, Wauschkuhn B, Verleger R (1999) Spatial S-R compatibility with centrally presented stimuli. An event-related asymmetry study on dimensional overlap. J Cogn Neurosci 11(2):214–229PubMedCrossRef Wascher E, Reinhard M, Wauschkuhn B, Verleger R (1999) Spatial S-R compatibility with centrally presented stimuli. An event-related asymmetry study on dimensional overlap. J Cogn Neurosci 11(2):214–229PubMedCrossRef
Zurück zum Zitat Willemssen R, Müller T, Schwarz M, Falkenstein M, Beste C (2009) Response monitoring in de novo patients with Parkinson’s disease. PloS One 4:e4898PubMedCentralPubMedCrossRef Willemssen R, Müller T, Schwarz M, Falkenstein M, Beste C (2009) Response monitoring in de novo patients with Parkinson’s disease. PloS One 4:e4898PubMedCentralPubMedCrossRef
Zurück zum Zitat Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. Neuroimage 22:590–602PubMedCrossRef Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. Neuroimage 22:590–602PubMedCrossRef
Zurück zum Zitat Zimmer HD (2008) Visual and spatial working memory: from boxes to networks. Neurosci Biobehav Rev 32:1373–1395PubMedCrossRef Zimmer HD (2008) Visual and spatial working memory: from boxes to networks. Neurosci Biobehav Rev 32:1373–1395PubMedCrossRef
Metadaten
Titel
Crosslinking EEG time–frequency decomposition and fMRI in error monitoring
verfasst von
Sven Hoffmann
Franziska Labrenz
Maria Themann
Edmund Wascher
Christian Beste
Publikationsdatum
01.03.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 2/2014
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0521-y

Weitere Artikel der Ausgabe 2/2014

Brain Structure and Function 2/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.