Skip to main content
Erschienen in: Brain Structure and Function 6/2015

01.11.2015 | Original Article

Synchronization among neuronal pools without common inputs: in vivo study

verfasst von: Haya Brama, Shoshana Guberman, Moshe Abeles, Edward Stern, Ido Kanter

Erschienen in: Brain Structure and Function | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Abstract

Periodic synchronization of activity among neuronal pools has been related to substantial neural processes and information throughput in the neocortical network. However, the mechanisms of generating such periodic synchronization among distributed pools of neurons remain unclear. We hypothesize that to a large extent there is interplay between the topology of the neocortical networks and their reverberating modes of activity. The firing synchronization is governed by a nonlocal mechanism, the network delay loops, such that distant neuronal pools without common drives can be synchronized. This theoretical interplay between network topology and the synchronized mode is verified using an iterative procedure of a single intracellularly recorded neuron in vivo, imitating the dynamics of the entire network. The input is injected to the neuron via the recording electrode as current and computed from the filtered, evoked spikes of its pre-synaptic sources, previously emulated by the same neuron. In this manner we approximate subthreshold synaptic inputs from afferent neuronal pools to the neuron. Embedding the activity of these recurrent motifs in the intact brain allows us to measure the effects of connection probability, synaptic strength, and ongoing activity on the neuronal synchrony. Our in vivo experiments indicate that an initial stimulus given to a single pool is dynamically evolving into the formations of zero-lag and cluster synchronization. By applying results from theoretical models and in vitro experiments to in vivo activity in the intact brain, we support the notion that this mechanism may account for the binding activity across distributed brain areas.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New YorkCrossRef Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Abeles M, Hayon G, Lehmann D (2004) Modeling compositionality by dynamic binding of synfire chains. J Comput Neurosci 17:179–201CrossRefPubMed Abeles M, Hayon G, Lehmann D (2004) Modeling compositionality by dynamic binding of synfire chains. J Comput Neurosci 17:179–201CrossRefPubMed
Zurück zum Zitat Amit DJ (1995) The hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–626CrossRef Amit DJ (1995) The hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–626CrossRef
Zurück zum Zitat Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871CrossRefPubMed Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871CrossRefPubMed
Zurück zum Zitat Bienenstock E (1995) A model of neocortex. Netw Comput Neural Syst 6:179–224CrossRef Bienenstock E (1995) A model of neocortex. Netw Comput Neural Syst 6:179–224CrossRef
Zurück zum Zitat Binder MD, Powers RK (2001) Relationship between simulated common synaptic input and discharge synchrony in cat spinal motoneurons. J Neurophysiol 86:2266–2275PubMed Binder MD, Powers RK (2001) Relationship between simulated common synaptic input and discharge synchrony in cat spinal motoneurons. J Neurophysiol 86:2266–2275PubMed
Zurück zum Zitat Brama H, Peleg Y, Kinzel W, Kanter I (2013) Transient to zero-lag synchronization in excitable networks. Phys Rev E 87:032813CrossRef Brama H, Peleg Y, Kinzel W, Kanter I (2013) Transient to zero-lag synchronization in excitable networks. Phys Rev E 87:032813CrossRef
Zurück zum Zitat Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. science 304:1926–1929CrossRefPubMed Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. science 304:1926–1929CrossRefPubMed
Zurück zum Zitat Cao J, Li L (2009) Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw 22:335–342CrossRefPubMed Cao J, Li L (2009) Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw 22:335–342CrossRefPubMed
Zurück zum Zitat Câteau H, Fukai T (2001) Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Netw 14:675–685CrossRefPubMed Câteau H, Fukai T (2001) Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Netw 14:675–685CrossRefPubMed
Zurück zum Zitat Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cognit Sci 7:415–423CrossRef Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cognit Sci 7:415–423CrossRef
Zurück zum Zitat Datta A, Stephens J (1990) Synchronization of motor unit activity during voluntary contraction in man. Journal Physiol 422:397–419CrossRef Datta A, Stephens J (1990) Synchronization of motor unit activity during voluntary contraction in man. Journal Physiol 422:397–419CrossRef
Zurück zum Zitat Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751CrossRefPubMed Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751CrossRefPubMed
Zurück zum Zitat Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533CrossRefPubMed Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533CrossRefPubMed
Zurück zum Zitat Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716CrossRefPubMed Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716CrossRefPubMed
Zurück zum Zitat Gerstner W, Kistler WM (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, New YorkCrossRef Gerstner W, Kistler WM (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, New YorkCrossRef
Zurück zum Zitat Gewaltig MO, Diesmann M, Aertsen A (1995) Propagation of synfire activity in cortical networks: a statistical approach. In:Kappen B, Gielen S (eds) Neural networks: artificial intelligence and industrial applications, Springer, Berlin, pp 37–40 Gewaltig MO, Diesmann M, Aertsen A (1995) Propagation of synfire activity in cortical networks: a statistical approach. In:Kappen B, Gielen S (eds) Neural networks: artificial intelligence and industrial applications, Springer, Berlin, pp 37–40
Zurück zum Zitat Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337CrossRefPubMed Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337CrossRefPubMed
Zurück zum Zitat Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing–based decisions. Nat Neurosci 9:420–428CrossRefPubMed Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing–based decisions. Nat Neurosci 9:420–428CrossRefPubMed
Zurück zum Zitat Hebb DO (2002) The organization of behavior: a neuropsychological theory. Psychology Press, New York Hebb DO (2002) The organization of behavior: a neuropsychological theory. Psychology Press, New York
Zurück zum Zitat Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–564CrossRefPubMed Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–564CrossRefPubMed
Zurück zum Zitat Kanter I, Kopelowitz E, Vardi R, Zigzag M, Cohen D, Kinzel W (2011a) Nonlocal mechanism for synchronization of time delay networks. J Stat Phys 145:713–733CrossRef Kanter I, Kopelowitz E, Vardi R, Zigzag M, Cohen D, Kinzel W (2011a) Nonlocal mechanism for synchronization of time delay networks. J Stat Phys 145:713–733CrossRef
Zurück zum Zitat Kanter I, Kopelowitz E, Vardi R, Zigzag M, Kinzel W, Abeles M, Cohen D (2011b) Nonlocal mechanism for cluster synchronization in neural circuits. EPL Europhys Lett 93:66001CrossRef Kanter I, Kopelowitz E, Vardi R, Zigzag M, Kinzel W, Abeles M, Cohen D (2011b) Nonlocal mechanism for cluster synchronization in neural circuits. EPL Europhys Lett 93:66001CrossRef
Zurück zum Zitat Kanter I, Zigzag M, Englert A, Geissler F, Kinzel W (2011c) Synchronization of unidirectional time delay chaotic networks and the greatest common divisor. EPL Europhys Lett 93:60003CrossRef Kanter I, Zigzag M, Englert A, Geissler F, Kinzel W (2011c) Synchronization of unidirectional time delay chaotic networks and the greatest common divisor. EPL Europhys Lett 93:60003CrossRef
Zurück zum Zitat Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc Royal Soc Lond Ser B Biol Sci 161:483–495CrossRef Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc Royal Soc Lond Ser B Biol Sci 161:483–495CrossRef
Zurück zum Zitat Kirkwood PA, Sears TA (1978) The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. Journal Physiol 275:103–134CrossRef Kirkwood PA, Sears TA (1978) The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. Journal Physiol 275:103–134CrossRef
Zurück zum Zitat Legendy C (1967) On the scheme by which the human brain stores information. Math Biosci 1:555–597CrossRef Legendy C (1967) On the scheme by which the human brain stores information. Math Biosci 1:555–597CrossRef
Zurück zum Zitat Litvak V, Sompolinsky H, Segev I, Abeles M (2003) On the transmission of rate code in long feedforward networks with excitatory–inhibitory balance. J Neurosci 23:3006–3015PubMed Litvak V, Sompolinsky H, Segev I, Abeles M (2003) On the transmission of rate code in long feedforward networks with excitatory–inhibitory balance. J Neurosci 23:3006–3015PubMed
Zurück zum Zitat Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506CrossRefPubMed Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506CrossRefPubMed
Zurück zum Zitat Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810CrossRefPubMed Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810CrossRefPubMed
Zurück zum Zitat Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827CrossRefPubMed Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827CrossRefPubMed
Zurück zum Zitat Nowotny T, Huerta R (2003) Explaining synchrony in feed-forward networks. Biol Cybern 89:237–241CrossRefPubMed Nowotny T, Huerta R (2003) Explaining synchrony in feed-forward networks. Biol Cybern 89:237–241CrossRefPubMed
Zurück zum Zitat Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593–599CrossRefPubMed Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593–599CrossRefPubMed
Zurück zum Zitat Schonewille M et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461CrossRefPubMed Schonewille M et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461CrossRefPubMed
Zurück zum Zitat Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896PubMed Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896PubMed
Zurück zum Zitat Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374CrossRefPubMed Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374CrossRefPubMed
Zurück zum Zitat Stern EA, Kincaid AE, Wilson CJ (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 77:1697–1715PubMed Stern EA, Kincaid AE, Wilson CJ (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 77:1697–1715PubMed
Zurück zum Zitat Stern EA, Jaeger D, Wilson CJ (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478CrossRefPubMed Stern EA, Jaeger D, Wilson CJ (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478CrossRefPubMed
Zurück zum Zitat Vardi R, Wallach A, Kopelowitz E, Abeles M, Marom S, Kanter I (2012) Synthetic reverberating activity patterns embedded in networks of cortical neurons. EPL Europhys Lett 97:66002CrossRef Vardi R, Wallach A, Kopelowitz E, Abeles M, Marom S, Kanter I (2012) Synthetic reverberating activity patterns embedded in networks of cortical neurons. EPL Europhys Lett 97:66002CrossRef
Zurück zum Zitat Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRefPubMed Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRefPubMed
Zurück zum Zitat Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal Neurosci 16:2397–2410 Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal Neurosci 16:2397–2410
Zurück zum Zitat Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612CrossRefPubMed Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612CrossRefPubMed
Metadaten
Titel
Synchronization among neuronal pools without common inputs: in vivo study
verfasst von
Haya Brama
Shoshana Guberman
Moshe Abeles
Edward Stern
Ido Kanter
Publikationsdatum
01.11.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2015
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0886-6

Weitere Artikel der Ausgabe 6/2015

Brain Structure and Function 6/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.