Skip to main content
Erschienen in: Brain Structure and Function 3/2017

06.08.2016 | Original Article

Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse

verfasst von: Alexandros Goulas, Harry B. M. Uylings, Claus C. Hilgetag

Erschienen in: Brain Structure and Function | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Structural connectivity among cortical areas provides the substrate for information exchange in the cerebral cortex and is characterized by systematic patterns of presence or absence of connections. What principles govern this cortical wiring diagram? Here, we investigate the relation of physical distance and cytoarchitecture with the connectional architecture of the mouse cortex. Moreover, we examine the relation between patterns of ipsilateral and contralateral connections. Our analysis reveals a mirrored and attenuated organization of contralateral connections when compared with ipsilateral connections. Both physical distance and cytoarchitectonic similarity of cortical areas are related to the presence or absence of connections. Notably, our analysis demonstrates that the combination of these factors relates better to cortico-cortical connectivity than each factor in isolation and that the two factors relate differently to ipsilateral and contralateral connectivity. Physical distance is more tightly related to the presence or absence of ipsilateral connections, but its relevance greatly diminishes for contralateral connections, while the contribution of cytoarchitectonic similarity remains relatively stable. Our results, together with similar findings in the cat and macaque cortex, suggest that a common set of principles underlies the macroscale wiring of the mammalian cerebral cortex.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422CrossRefPubMed Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422CrossRefPubMed
Zurück zum Zitat Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Ann Rev Neurosci 38:269–289CrossRefPubMed Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Ann Rev Neurosci 38:269–289CrossRefPubMed
Zurück zum Zitat Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6:32CrossRefPubMedPubMedCentral Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6:32CrossRefPubMedPubMedCentral
Zurück zum Zitat Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401CrossRefPubMed Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401CrossRefPubMed
Zurück zum Zitat Beul SF, Grant S, Hilgetag CC (2015a) A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 220:3167–3184CrossRefPubMed Beul SF, Grant S, Hilgetag CC (2015a) A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 220:3167–3184CrossRefPubMed
Zurück zum Zitat Charvet CJ, Cahalane DJ, Finlay BL (2015) Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cereb Cortex 25:147–160CrossRefPubMed Charvet CJ, Cahalane DJ, Finlay BL (2015) Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cereb Cortex 25:147–160CrossRefPubMed
Zurück zum Zitat Chen Y, Wang S, Hilgetag CC, Zhou C (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9:e1002937CrossRefPubMedPubMedCentral Chen Y, Wang S, Hilgetag CC, Zhou C (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9:e1002937CrossRefPubMedPubMedCentral
Zurück zum Zitat Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Chen YC et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11CrossRefPubMed Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Chen YC et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11CrossRefPubMed
Zurück zum Zitat Costa LF, Kaiser M, Hilgetag CC (2007) Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Biol 1:16CrossRefPubMedCentral Costa LF, Kaiser M, Hilgetag CC (2007) Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Biol 1:16CrossRefPubMedCentral
Zurück zum Zitat Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMed Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMed
Zurück zum Zitat Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197CrossRefPubMedPubMedCentral Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197CrossRefPubMedPubMedCentral
Zurück zum Zitat Greilich H (1984) Quantitative Analyse der cortico-corticalen Fernverbindungen bei der Maus. Thesis, University of Tlibingen Greilich H (1984) Quantitative Analyse der cortico-corticalen Fernverbindungen bei der Maus. Thesis, University of Tlibingen
Zurück zum Zitat Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. NeuroImage 51:1006–1017CrossRefPubMed Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. NeuroImage 51:1006–1017CrossRefPubMed
Zurück zum Zitat Ji S, Fakhry A, Deng W (2014) Integrative analysis of the connectivity and gene expression atlases of the mouse brain. NeuroImage 84:245–253CrossRefPubMed Ji S, Fakhry A, Deng W (2014) Integrative analysis of the connectivity and gene expression atlases of the mouse brain. NeuroImage 84:245–253CrossRefPubMed
Zurück zum Zitat Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2:e95CrossRefPubMedPubMedCentral Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2:e95CrossRefPubMedPubMedCentral
Zurück zum Zitat Kaiser M, Hilgetag CC, van Ooyen A (2009) A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cereb Cortex 19:3001–3010CrossRefPubMed Kaiser M, Hilgetag CC, van Ooyen A (2009) A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cereb Cortex 19:3001–3010CrossRefPubMed
Zurück zum Zitat Ko H, Hofer SB, Pichler B, Buchanan K, Sjöström PJ, Mrsic-Flogel TD (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91CrossRefPubMedPubMedCentral Ko H, Hofer SB, Pichler B, Buchanan K, Sjöström PJ, Mrsic-Flogel TD (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91CrossRefPubMedPubMedCentral
Zurück zum Zitat Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 17:559–578CrossRefPubMed Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 17:559–578CrossRefPubMed
Zurück zum Zitat Moretti P, Muñoz MA (2013) Griffiths phases and the stretching of criticality in brain networks. Nat Commun 4:2521CrossRefPubMed Moretti P, Muñoz MA (2013) Griffiths phases and the stretching of criticality in brain networks. Nat Commun 4:2521CrossRefPubMed
Zurück zum Zitat Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4:e1000190CrossRefPubMedPubMedCentral Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4:e1000190CrossRefPubMedPubMedCentral
Zurück zum Zitat Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings HBM, van Eden CG, de Bruin JPC, Feenstra MGP, Pennartz CMA (eds) The prefrontal cortex: its structure, function and pathology. Progress in brain research, vol 85. Elsevier, Amsterdam, pp 6394 Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings HBM, van Eden CG, de Bruin JPC, Feenstra MGP, Pennartz CMA (eds) The prefrontal cortex: its structure, function and pathology. Progress in brain research, vol 85. Elsevier, Amsterdam, pp 6394
Zurück zum Zitat Paxinos G, Franklin K (2013) The mouse brain in stereotaxic coordinates, 4th edn. Academic Press, London Paxinos G, Franklin K (2013) The mouse brain in stereotaxic coordinates, 4th edn. Academic Press, London
Zurück zum Zitat Polleux F, Dehay C, Kennedy H (1997) The timetable of laminar neurogenesis contributes to the specification of corticla areas in mouse isocortex. J Comp Neurol 385:95–116CrossRefPubMed Polleux F, Dehay C, Kennedy H (1997) The timetable of laminar neurogenesis contributes to the specification of corticla areas in mouse isocortex. J Comp Neurol 385:95–116CrossRefPubMed
Zurück zum Zitat Rajkowska G, Kosmal A (1989) Contralateral connections of the dog’s frontal association cortex. Acta Neurobiol Exp 49:141–151 Rajkowska G, Kosmal A (1989) Contralateral connections of the dog’s frontal association cortex. Acta Neurobiol Exp 49:141–151
Zurück zum Zitat Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71CrossRefPubMed Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71CrossRefPubMed
Zurück zum Zitat Ramón y Cajal S (1899) Histology of the nervous system of man and the vertebrates, vol 1 (trans: N Swanson and LW Swanson), Ch 5. Oxford University Press, New York Ramón y Cajal S (1899) Histology of the nervous system of man and the vertebrates, vol 1 (trans: N Swanson and LW Swanson), Ch 5. Oxford University Press, New York
Zurück zum Zitat Rao AR, Bandyopadhyay S (1996) A Markov chain Monte Carlo method for generating random (0,1)-matrices with given marginals. Sankhya A 58:225–242 Rao AR, Bandyopadhyay S (1996) A Markov chain Monte Carlo method for generating random (0,1)-matrices with given marginals. Sankhya A 58:225–242
Zurück zum Zitat Rubinov M, Ypma RJ, Watson C, Bullmore ET (2015) Wiring cost and topological participation of the mouse brain connectome. Proc Natl Acad Sci USA 112:10032–10037CrossRefPubMedPubMedCentral Rubinov M, Ypma RJ, Watson C, Bullmore ET (2015) Wiring cost and topological participation of the mouse brain connectome. Proc Natl Acad Sci USA 112:10032–10037CrossRefPubMedPubMedCentral
Zurück zum Zitat Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 10:e0118432CrossRefPubMedPubMedCentral Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 10:e0118432CrossRefPubMedPubMedCentral
Zurück zum Zitat Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15:1463–1483PubMed Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15:1463–1483PubMed
Zurück zum Zitat Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141CrossRefPubMed Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141CrossRefPubMed
Zurück zum Zitat Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ, Gee DG, Roy AK, Banich MT, Castellanos FX, Milham MP (2008) Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci 28:13754–13764CrossRefPubMedPubMedCentral Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ, Gee DG, Roy AK, Banich MT, Castellanos FX, Milham MP (2008) Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci 28:13754–13764CrossRefPubMedPubMedCentral
Zurück zum Zitat Trusina A, Sneppen K, Dodd IB, Shearwin KE, Egan JB (2005) Functional alignment of regulatory networks: a study of temperate phages. PLoS Comput Biol 1:e74CrossRefPubMedPubMedCentral Trusina A, Sneppen K, Dodd IB, Shearwin KE, Egan JB (2005) Functional alignment of regulatory networks: a study of temperate phages. PLoS Comput Biol 1:e74CrossRefPubMedPubMedCentral
Zurück zum Zitat Van De Werd HJJM, Uylings HBM (2014) Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 219:433–459CrossRef Van De Werd HJJM, Uylings HBM (2014) Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 219:433–459CrossRef
Zurück zum Zitat Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353CrossRef Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353CrossRef
Zurück zum Zitat Varier S, Kaiser M (2011) Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001044CrossRefPubMedPubMedCentral Varier S, Kaiser M (2011) Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001044CrossRefPubMedPubMedCentral
Zurück zum Zitat Vidakovic B (2011) Statistics for bioengineering sciences, 1st edn. Springer, New YorkCrossRef Vidakovic B (2011) Statistics for bioengineering sciences, 1st edn. Springer, New YorkCrossRef
Zurück zum Zitat Wang D, Buckner RL, Liu H (2014) Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 34:12341–12352CrossRefPubMedPubMedCentral Wang D, Buckner RL, Liu H (2014) Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 34:12341–12352CrossRefPubMedPubMedCentral
Zurück zum Zitat Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81CrossRefPubMed Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81CrossRefPubMed
Zurück zum Zitat Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358:152–155CrossRefPubMed Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358:152–155CrossRefPubMed
Zurück zum Zitat Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111CrossRefPubMedPubMedCentral Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111CrossRefPubMedPubMedCentral
Metadaten
Titel
Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse
verfasst von
Alexandros Goulas
Harry B. M. Uylings
Claus C. Hilgetag
Publikationsdatum
06.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 3/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1277-y

Weitere Artikel der Ausgabe 3/2017

Brain Structure and Function 3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.