Skip to main content
Erschienen in: Brain Structure and Function 5/2017

18.12.2016 | Original Article

Intracerebral evidence of rhythm transform in the human auditory cortex

verfasst von: Sylvie Nozaradan, André Mouraux, Jacques Jonas, Sophie Colnat-Coulbois, Bruno Rossion, Louis Maillard

Erschienen in: Brain Structure and Function | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl’s gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (<30 Hz) and high-frequency (>30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.
Literatur
Zurück zum Zitat Bancaud J, Talairach J (1973) Methodology of stereo EEG exploration and surgical intervention in epilepsy. Rev Otoneuroophtalmol 45(4):315–328PubMed Bancaud J, Talairach J (1973) Methodology of stereo EEG exploration and surgical intervention in epilepsy. Rev Otoneuroophtalmol 45(4):315–328PubMed
Zurück zum Zitat Brosch M, Budinger E, Scheich H (2002) Stimulus-related gamma oscillations in primate auditory cortex. J Neurophysiol 87:2715–2725PubMed Brosch M, Budinger E, Scheich H (2002) Stimulus-related gamma oscillations in primate auditory cortex. J Neurophysiol 87:2715–2725PubMed
Zurück zum Zitat Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102(4):2358–2374CrossRefPubMedPubMedCentral Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102(4):2358–2374CrossRefPubMedPubMedCentral
Zurück zum Zitat Chemin B, Mouraux A, Nozaradan S (2014) Body movement selectively shapes the neural representation of musical rhythm. Psychol Sci 25(12):2147–2159CrossRefPubMed Chemin B, Mouraux A, Nozaradan S (2014) Body movement selectively shapes the neural representation of musical rhythm. Psychol Sci 25(12):2147–2159CrossRefPubMed
Zurück zum Zitat Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 31(40):14067–14075CrossRefPubMed Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 31(40):14067–14075CrossRefPubMed
Zurück zum Zitat Drake C, Botte MC (1993) Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys 54(3):277–286CrossRefPubMed Drake C, Botte MC (1993) Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys 54(3):277–286CrossRefPubMed
Zurück zum Zitat Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680CrossRefPubMed Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680CrossRefPubMed
Zurück zum Zitat Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064CrossRefPubMed Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064CrossRefPubMed
Zurück zum Zitat Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157(1–2):1–42CrossRefPubMed Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157(1–2):1–42CrossRefPubMed
Zurück zum Zitat Erulkar SD, Butler RA, Gerstein GL (1968) Excitation and inhibition in cochlear nucleus. II. Frequency modulated tones. J Neurophysiol 31:537–548PubMed Erulkar SD, Butler RA, Gerstein GL (1968) Excitation and inhibition in cochlear nucleus. II. Frequency modulated tones. J Neurophysiol 31:537–548PubMed
Zurück zum Zitat Fernald RD, Gerstein GL (1972) Response of cat cochlear nucleus neurons to frequency and amplitude modulated tones. Brain Res 45:417–435CrossRefPubMed Fernald RD, Gerstein GL (1972) Response of cat cochlear nucleus neurons to frequency and amplitude modulated tones. Brain Res 45:417–435CrossRefPubMed
Zurück zum Zitat Fraisse P (1967) Psychologie du temps. Presses universitaires de France, France Fraisse P (1967) Psychologie du temps. Presses universitaires de France, France
Zurück zum Zitat Friedman-Hill S, Maldonado PE, Gray CM (2000) Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus dependence of gammaband neuronal oscillations. Cereb Cortex 10:1105–1116CrossRefPubMed Friedman-Hill S, Maldonado PE, Gray CM (2000) Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus dependence of gammaband neuronal oscillations. Cereb Cortex 10:1105–1116CrossRefPubMed
Zurück zum Zitat Frien A, Eckhorn R, Bauer R, Woelbern T, Gabriel A (2000) Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. Eur J Neurosci 12:1453–1465CrossRefPubMed Frien A, Eckhorn R, Bauer R, Woelbern T, Gabriel A (2000) Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. Eur J Neurosci 12:1453–1465CrossRefPubMed
Zurück zum Zitat Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic β oscillations. J Neurosci 32(5):1791–1802CrossRefPubMed Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic β oscillations. J Neurosci 32(5):1791–1802CrossRefPubMed
Zurück zum Zitat Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C (2011) Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas. Hear Res 237(1–2):1–18 Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C (2011) Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas. Hear Res 237(1–2):1–18
Zurück zum Zitat Grahn JA (2012) Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci 4(4):585–606CrossRefPubMed Grahn JA (2012) Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci 4(4):585–606CrossRefPubMed
Zurück zum Zitat Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends Neurosci 25(7):348–353CrossRefPubMed Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends Neurosci 25(7):348–353CrossRefPubMed
Zurück zum Zitat Hove MJ, Risen JL (2009) It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cogn 27:949–961CrossRef Hove MJ, Risen JL (2009) It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cogn 27:949–961CrossRef
Zurück zum Zitat Hove MJ, Marie C, Bruce IC, Trainor LJ (2014) Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proc Natl Acad Sci USA 111(28):10383–10388CrossRefPubMedPubMedCentral Hove MJ, Marie C, Bruce IC, Trainor LJ (2014) Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proc Natl Acad Sci USA 111(28):10383–10388CrossRefPubMedPubMedCentral
Zurück zum Zitat Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, Rossion B (2016) A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci USA 113(28):E4088–E4097CrossRefPubMedPubMedCentral Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, Rossion B (2016) A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci USA 113(28):E4088–E4097CrossRefPubMedPubMedCentral
Zurück zum Zitat Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577 (Review) CrossRefPubMed Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577 (Review) CrossRefPubMed
Zurück zum Zitat Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113CrossRefPubMed Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113CrossRefPubMed
Zurück zum Zitat Large EW (2008) Resonating to musical rhythm: theory and experiment. In: Grondin Simon (ed) The psychology of time. Emerald, West Yorkshire Large EW (2008) Resonating to musical rhythm: theory and experiment. In: Grondin Simon (ed) The psychology of time. Emerald, West Yorkshire
Zurück zum Zitat Large EW (2010) Neurodynamics of music. In: Riess Jones M, Fay RR, Popper AN (eds) Springer handbook of auditory research, vol 36., Music perceptionSpringer, New York, pp 201–231 Large EW (2010) Neurodynamics of music. In: Riess Jones M, Fay RR, Popper AN (eds) Springer handbook of auditory research, vol 36., Music perceptionSpringer, New York, pp 201–231
Zurück zum Zitat Leonard MK, Bouchard KE, Tang C, Chang EF (2015) Dynamic encoding of speech sequence probability in human temporal cortex. J Neurosci 35(18):7203–7214CrossRefPubMedPubMedCentral Leonard MK, Bouchard KE, Tang C, Chang EF (2015) Dynamic encoding of speech sequence probability in human temporal cortex. J Neurosci 35(18):7203–7214CrossRefPubMedPubMedCentral
Zurück zum Zitat Liégeois-Chauvel C, Lorenzi C, Trébuchon A, Régis J, Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cereb Cortex 14(7):731–740CrossRefPubMed Liégeois-Chauvel C, Lorenzi C, Trébuchon A, Régis J, Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cereb Cortex 14(7):731–740CrossRefPubMed
Zurück zum Zitat London J (2004) Hearing in time: psychological aspects of musical meter. Oxford UP, LondonCrossRef London J (2004) Hearing in time: psychological aspects of musical meter. Oxford UP, LondonCrossRef
Zurück zum Zitat Malone BJ, Schreiner CE (2010) Time-varying sounds: amplitude envelope modulations. In: Rees A, Palmer AR (eds) The auditory brain. Oxford University Press, Oxford, New York, pp 125–148 Malone BJ, Schreiner CE (2010) Time-varying sounds: amplitude envelope modulations. In: Rees A, Palmer AR (eds) The auditory brain. Oxford University Press, Oxford, New York, pp 125–148
Zurück zum Zitat McAuley JD (2010) Tempo and rhythm. In Jones MR et al. (eds.) Music Perception, Springer Handbook of Auditory Research 36, USA McAuley JD (2010) Tempo and rhythm. In Jones MR et al. (eds.) Music Perception, Springer Handbook of Auditory Research 36, USA
Zurück zum Zitat Miller KJ, Foster BL, Honey CJ (2012) Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Front Comput Neurosci 6:85CrossRefPubMedPubMedCentral Miller KJ, Foster BL, Honey CJ (2012) Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Front Comput Neurosci 6:85CrossRefPubMedPubMedCentral
Zurück zum Zitat Møller AR (1972) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiol Scand 86:223–238CrossRefPubMed Møller AR (1972) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiol Scand 86:223–238CrossRefPubMed
Zurück zum Zitat Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L (2011) Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 31:6079–6087CrossRefPubMed Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L (2011) Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 31:6079–6087CrossRefPubMed
Zurück zum Zitat Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15(6):4CrossRefPubMedPubMedCentral Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15(6):4CrossRefPubMedPubMedCentral
Zurück zum Zitat Nourski KV, Reale RA, Oya H, Kawasaki H, Kovach CK, Chen H, Howard MA 3rd, Brugge JF (2009) Temporal envelope of time-compressed speech represented in the human auditory cortex. J Neurosci 29(49):15564–15574CrossRefPubMedPubMedCentral Nourski KV, Reale RA, Oya H, Kawasaki H, Kovach CK, Chen H, Howard MA 3rd, Brugge JF (2009) Temporal envelope of time-compressed speech represented in the human auditory cortex. J Neurosci 29(49):15564–15574CrossRefPubMedPubMedCentral
Zurück zum Zitat Nourski KV, Steinschneider M, Rhone AE, Oya H, Kawasaki H, Howard MA 3rd, McMurray B (2015) Sound identification in human auditory cortex: differential contribution of local field potentials and high gamma power as revealed by direct intracranial recordings. Brain Lang 148:37–50CrossRefPubMedPubMedCentral Nourski KV, Steinschneider M, Rhone AE, Oya H, Kawasaki H, Howard MA 3rd, McMurray B (2015) Sound identification in human auditory cortex: differential contribution of local field potentials and high gamma power as revealed by direct intracranial recordings. Brain Lang 148:37–50CrossRefPubMedPubMedCentral
Zurück zum Zitat Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the neuronal entrainment to beat and meter. J Neurosci 31:10234–10240CrossRefPubMed Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the neuronal entrainment to beat and meter. J Neurosci 31:10234–10240CrossRefPubMed
Zurück zum Zitat Nozaradan S, Peretz I, Mouraux A (2012a) Steady-state evoked potentials as an index of multisensory temporal binding. Neuroimage 60(1):21–28CrossRefPubMed Nozaradan S, Peretz I, Mouraux A (2012a) Steady-state evoked potentials as an index of multisensory temporal binding. Neuroimage 60(1):21–28CrossRefPubMed
Zurück zum Zitat Nozaradan S, Peretz I, Mouraux A (2012b) Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci 32(49):17572–17581CrossRefPubMed Nozaradan S, Peretz I, Mouraux A (2012b) Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci 32(49):17572–17581CrossRefPubMed
Zurück zum Zitat Nozaradan S, Zerouali Y, Peretz I, Mouraux A (2015) Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. Cereb Cortex 25(3):736–747CrossRefPubMed Nozaradan S, Zerouali Y, Peretz I, Mouraux A (2015) Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. Cereb Cortex 25(3):736–747CrossRefPubMed
Zurück zum Zitat Nozaradan S, Schönwiesner M, Caron-Desrochers L, Lehmann A (2016b) Enhanced brainstem and cortical encoding of sound during synchronized movement. Neuroimage 16:30322–30326 Nozaradan S, Schönwiesner M, Caron-Desrochers L, Lehmann A (2016b) Enhanced brainstem and cortical encoding of sound during synchronized movement. Neuroimage 16:30322–30326
Zurück zum Zitat Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69(2):160–170CrossRefPubMed Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69(2):160–170CrossRefPubMed
Zurück zum Zitat Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF (2012) Reconstructing speech from human auditory cortex. PLoS Biol 10:e1001251CrossRefPubMedPubMedCentral Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF (2012) Reconstructing speech from human auditory cortex. PLoS Biol 10:e1001251CrossRefPubMedPubMedCentral
Zurück zum Zitat Patel AD, Iversen JR (2014) The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front Psychol 8:57. doi:10.3389/fnsys.2014.00057 Patel AD, Iversen JR (2014) The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front Psychol 8:57. doi:10.​3389/​fnsys.​2014.​00057
Zurück zum Zitat Phillips-Silver J, Trainor LJ (2007) Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105(3):533–546CrossRefPubMed Phillips-Silver J, Trainor LJ (2007) Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105(3):533–546CrossRefPubMed
Zurück zum Zitat Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82:165–178CrossRefPubMed Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82:165–178CrossRefPubMed
Zurück zum Zitat Povel DJ, Essens PJ (1985) Perception of temporal patterns. Music Percept 2:411–441CrossRef Povel DJ, Essens PJ (1985) Perception of temporal patterns. Music Percept 2:411–441CrossRef
Zurück zum Zitat Rajendran VG, Harper NS, Willmore BD, Schnupp JWH (2015) A biologically plausible model of beat detection in complex rhythmic sounds. In: Proceedings of the rhythm perception and production workshop, Amsterdam Rajendran VG, Harper NS, Willmore BD, Schnupp JWH (2015) A biologically plausible model of beat detection in complex rhythmic sounds. In: Proceedings of the rhythm perception and production workshop, Amsterdam
Zurück zum Zitat Regan DM (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York Regan DM (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York
Zurück zum Zitat Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992CrossRefPubMed Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992CrossRefPubMed
Zurück zum Zitat Rossion B (2014) Understanding individual face discrimination by means of fast periodic visual stimulation. Exp Brain Res 232(6):1599–1621CrossRefPubMed Rossion B (2014) Understanding individual face discrimination by means of fast periodic visual stimulation. Exp Brain Res 232(6):1599–1621CrossRefPubMed
Zurück zum Zitat Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18CrossRefPubMed Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18CrossRefPubMed
Zurück zum Zitat Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304CrossRefPubMed Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304CrossRefPubMed
Zurück zum Zitat Steinschneider M, Fishman YI, Arezzo JC (2008) Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cereb Cortex 18(3):610–625CrossRefPubMed Steinschneider M, Fishman YI, Arezzo JC (2008) Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cereb Cortex 18(3):610–625CrossRefPubMed
Zurück zum Zitat Steinschneider M, Nourski KV, Kawasaki H, Oya H, Brugge JF, Howard MA 3rd (2011) Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus. Cereb Cortex 21(10):2332–2347CrossRefPubMedPubMedCentral Steinschneider M, Nourski KV, Kawasaki H, Oya H, Brugge JF, Howard MA 3rd (2011) Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus. Cereb Cortex 21(10):2332–2347CrossRefPubMedPubMedCentral
Zurück zum Zitat Steinschneider M, Nourski KV, Fishman YI (2013) Representation of speech in human auditory cortex: is it special? Hear Res 305:57–73CrossRefPubMed Steinschneider M, Nourski KV, Fishman YI (2013) Representation of speech in human auditory cortex: is it special? Hear Res 305:57–73CrossRefPubMed
Zurück zum Zitat Toiviainen P, Luck G, Thompson M (2010) Embodied meter: hierarchical eigenmodes in music-induced movement. Music Percept 28:59–70CrossRef Toiviainen P, Luck G, Thompson M (2010) Embodied meter: hierarchical eigenmodes in music-induced movement. Music Percept 28:59–70CrossRef
Zurück zum Zitat van Noorden L, Moelants D (1999) Resonance in the perception of musical pulse. J New Music Res 28:43–66CrossRef van Noorden L, Moelants D (1999) Resonance in the perception of musical pulse. J New Music Res 28:43–66CrossRef
Zurück zum Zitat Velasco MJ, Large EW (2011) Pulse detection in syncopating rhythms using neural oscillators. In: Proceedings of the 12th annual conference of the international society for music information retrieval, pp 186–190 Velasco MJ, Large EW (2011) Pulse detection in syncopating rhythms using neural oscillators. In: Proceedings of the 12th annual conference of the international society for music information retrieval, pp 186–190
Zurück zum Zitat Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107(8):2033–2041. doi:10.1152/jn.00310.2011 CrossRefPubMed Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107(8):2033–2041. doi:10.​1152/​jn.​00310.​2011 CrossRefPubMed
Zurück zum Zitat Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558CrossRefPubMed Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558CrossRefPubMed
Zurück zum Zitat Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, Poeppel D, Schroeder CE (2013) Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77(5):980–991CrossRefPubMedPubMedCentral Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, Poeppel D, Schroeder CE (2013) Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77(5):980–991CrossRefPubMedPubMedCentral
Metadaten
Titel
Intracerebral evidence of rhythm transform in the human auditory cortex
verfasst von
Sylvie Nozaradan
André Mouraux
Jacques Jonas
Sophie Colnat-Coulbois
Bruno Rossion
Louis Maillard
Publikationsdatum
18.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 5/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1348-0

Weitere Artikel der Ausgabe 5/2017

Brain Structure and Function 5/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.