Skip to main content
Erschienen in: Brain Structure and Function 1/2019

20.10.2018 | Original Article

Aldosterone-sensitive HSD2 neurons in mice

verfasst von: Silvia Gasparini, Jon M. Resch, Sowmya V. Narayan, Lila Peltekian, Gabrielle N. Iverson, Samyukta Karthik, Joel C. Geerling

Erschienen in: Brain Structure and Function | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice. Many cells throughout the brain have a developmental history of Hsd11b2 expression, but in the adult brain one small brainstem region with a leaky blood–brain barrier contains HSD2 neurons. These neurons express Hsd11b2, Nr3c2 (mineralocorticoid receptor), Agtr1a (angiotensin receptor), Slc17a6 (vesicular glutamate transporter 2), Phox2b, and Nxph4; many also express Cartpt or Lmx1b. No HSD2 neurons express cholinergic, monoaminergic, or several other neuropeptidergic markers. Their axons project to the parabrachial complex (PB), where they intermingle with AgRP-immunoreactive axons to form dense terminal fields overlapping FoxP2 neurons in the central lateral subnucleus (PBcL) and pre-locus coeruleus (pLC). Their axons also extend to the forebrain, intermingling with AgRP- and CGRP-immunoreactive axons to form dense terminals surrounding GABAergic neurons in the ventrolateral bed nucleus of the stria terminalis (BSTvL). Sparse axons target the periaqueductal gray, ventral tegmental area, lateral hypothalamic area, paraventricular hypothalamic nucleus, and central nucleus of the amygdala. Dual retrograde tracing revealed that largely separate HSD2 neurons project to pLC/PB or BSTvL. This projection pattern raises the possibility that a subset of HSD2 neurons promotes the dysphoric, anorexic, and anhedonic symptoms of hyperaldosteronism via AgRP-inhibited relay neurons in PB.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In preparing this manuscript, we also found evidence of Ai75 neurotoxicity in Slc17a7-IRES3-Cre mice (http://​connectivity.​brain-map.​org/​transgenic/​experiment/​304698566), which appears to be age-related and specific to regions that express that Cre-driver gene (hippocampus, cerebral cortex).
 
Literatur
Zurück zum Zitat Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355CrossRefPubMed Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355CrossRefPubMed
Zurück zum Zitat Arriza JL, Simerly RB, Swanson LW, Evans RM (1988) The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1(9):887–900CrossRefPubMed Arriza JL, Simerly RB, Swanson LW, Evans RM (1988) The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1(9):887–900CrossRefPubMed
Zurück zum Zitat Askew ML, Muckelrath HD, Johnston JR, Curtis KS (2015) Neuroanatomical association of hypothalamic HSD2-containing neurons with ERalpha, catecholamines, or oxytocin: implications for feeding? Front Syst Neurosci 9:91CrossRefPubMedPubMedCentral Askew ML, Muckelrath HD, Johnston JR, Curtis KS (2015) Neuroanatomical association of hypothalamic HSD2-containing neurons with ERalpha, catecholamines, or oxytocin: implications for feeding? Front Syst Neurosci 9:91CrossRefPubMedPubMedCentral
Zurück zum Zitat Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498CrossRefPubMed Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498CrossRefPubMed
Zurück zum Zitat Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84(3):490–515CrossRef Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84(3):490–515CrossRef
Zurück zum Zitat Betley JN, Cao ZF, Ritola KD, Sternson SM (2013) Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155(6):1337–1350CrossRefPubMedPubMedCentral Betley JN, Cao ZF, Ritola KD, Sternson SM (2013) Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155(6):1337–1350CrossRefPubMedPubMedCentral
Zurück zum Zitat Broadwell RD, Sofroniew MV (1993) Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120(2):245–263CrossRefPubMed Broadwell RD, Sofroniew MV (1993) Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120(2):245–263CrossRefPubMed
Zurück zum Zitat Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD (2015) Vagal sensory neuron subtypes that differentially control breathing. Cell 161(3):622–633CrossRefPubMedPubMedCentral Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD (2015) Vagal sensory neuron subtypes that differentially control breathing. Cell 161(3):622–633CrossRefPubMedPubMedCentral
Zurück zum Zitat Chang SE, Smedley EB, Stansfield KJ, Stott JJ, Smith KS (2017) optogenetic inhibition of ventral pallidum neurons impairs context-driven salt seeking. J Neurosci 37(23):5670–5680CrossRefPubMedPubMedCentral Chang SE, Smedley EB, Stansfield KJ, Stott JJ, Smith KS (2017) optogenetic inhibition of ventral pallidum neurons impairs context-driven salt seeking. J Neurosci 37(23):5670–5680CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen S, Aston-Jones G (1995) Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Res 674(1):107–111CrossRefPubMed Chen S, Aston-Jones G (1995) Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Res 674(1):107–111CrossRefPubMed
Zurück zum Zitat Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666CrossRefPubMed Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666CrossRefPubMed
Zurück zum Zitat Dai JX, Hu ZL, Shi M, Guo C, Ding YQ (2008) Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. J Comp Neurol 509(4):341–355CrossRefPubMed Dai JX, Hu ZL, Shi M, Guo C, Ding YQ (2008) Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. J Comp Neurol 509(4):341–355CrossRefPubMed
Zurück zum Zitat de Kloet ER, Otte C, Kumsta R, Kok L, Hillegers MH, Hasselmann H, Kliegel D, Joels M (2016) Stress and depression: a crucial role of the mineralocorticoid receptor. J Neuroendocrinol 28(8) de Kloet ER, Otte C, Kumsta R, Kok L, Hillegers MH, Hasselmann H, Kliegel D, Joels M (2016) Stress and depression: a crucial role of the mineralocorticoid receptor. J Neuroendocrinol 28(8)
Zurück zum Zitat Diaz R, Brown RW, Seckl JR (1998) Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci 18(7):2570–2580CrossRefPubMed Diaz R, Brown RW, Seckl JR (1998) Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci 18(7):2570–2580CrossRefPubMed
Zurück zum Zitat Dong HW (2008) Allen reference atlas: a digital color brain atlas of the C57Black/6J male mouse. Wiley. ix, Hoboken, 366 p. p Dong HW (2008) Allen reference atlas: a digital color brain atlas of the C57Black/6J male mouse. Wiley. ix, Hoboken, 366 p. p
Zurück zum Zitat Dong HW, Petrovich GD, Watts AG, Swanson LW (2001) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436(4):430–455CrossRefPubMed Dong HW, Petrovich GD, Watts AG, Swanson LW (2001) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436(4):430–455CrossRefPubMed
Zurück zum Zitat Egli RE, Kash TL, Choo K, Savchenko V, Matthews RT, Blakely RD, Winder DG (2005) Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology 30(4):657–668CrossRefPubMed Egli RE, Kash TL, Choo K, Savchenko V, Matthews RT, Blakely RD, Winder DG (2005) Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology 30(4):657–668CrossRefPubMed
Zurück zum Zitat Epstein AN (1982) Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3(3):493–494CrossRefPubMed Epstein AN (1982) Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3(3):493–494CrossRefPubMed
Zurück zum Zitat Essner RA, Smith AG, Jamnik AA, Ryba AR, Trutner ZD, Carter ME (2017) AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J Neurosci 37(36):8678–8687CrossRefPubMedPubMedCentral Essner RA, Smith AG, Jamnik AA, Ryba AR, Trutner ZD, Carter ME (2017) AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J Neurosci 37(36):8678–8687CrossRefPubMedPubMedCentral
Zurück zum Zitat Evans LC, Ivy JR, Wyrwoll C, McNairn JA, Menzies RI, Christensen TH, Al-Dujaili EA, Kenyon CJ, Mullins JJ, Seckl JR, Holmes MC, Bailey MA (2016) Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 133(14):1360–1370CrossRefPubMedPubMedCentral Evans LC, Ivy JR, Wyrwoll C, McNairn JA, Menzies RI, Christensen TH, Al-Dujaili EA, Kenyon CJ, Mullins JJ, Seckl JR, Holmes MC, Bailey MA (2016) Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 133(14):1360–1370CrossRefPubMedPubMedCentral
Zurück zum Zitat Fitts DA (1991) Effects of lesions of the ventral ventral median preoptic nucleus or subfornical organ on drinking and salt appetite after deoxycorticosterone acetate or yohimbine. Behav Neurosci 105(5):721–726CrossRefPubMed Fitts DA (1991) Effects of lesions of the ventral ventral median preoptic nucleus or subfornical organ on drinking and salt appetite after deoxycorticosterone acetate or yohimbine. Behav Neurosci 105(5):721–726CrossRefPubMed
Zurück zum Zitat Fluharty SJ, Epstein AN (1983) Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci 97(5):746–758CrossRefPubMed Fluharty SJ, Epstein AN (1983) Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci 97(5):746–758CrossRefPubMed
Zurück zum Zitat Formenti S, Bassi M, Nakamura NB, Schoorlemmer GH, Menani JV, Colombari E (2013) Hindbrain mineralocorticoid mechanisms on sodium appetite. Am J Physiol Regul Integr Comp Physiol 304(3):R252–R259CrossRefPubMed Formenti S, Bassi M, Nakamura NB, Schoorlemmer GH, Menani JV, Colombari E (2013) Hindbrain mineralocorticoid mechanisms on sodium appetite. Am J Physiol Regul Integr Comp Physiol 304(3):R252–R259CrossRefPubMed
Zurück zum Zitat Franklin KBJ, Paxinos G (2013) Paxinos and Franklin’s The mouse brain in stereotaxic coordinates. Academic Press, Amsterdam Franklin KBJ, Paxinos G (2013) Paxinos and Franklin’s The mouse brain in stereotaxic coordinates. Academic Press, Amsterdam
Zurück zum Zitat Funder J, Myles K (1996) Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology 137(12):5264–5268CrossRefPubMed Funder J, Myles K (1996) Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology 137(12):5264–5268CrossRefPubMed
Zurück zum Zitat Funder JW, Pearce PT, Smith R, Smith AI (1988) Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242(4878):583–585CrossRefPubMed Funder JW, Pearce PT, Smith R, Smith AI (1988) Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242(4878):583–585CrossRefPubMed
Zurück zum Zitat Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, Campbell JN, Gavrilova O, Lee CE, Olson DP, Elmquist JK, Tannous BA, Krashes MJ, Lowell BB (2015) A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 18(6):863–871CrossRefPubMedPubMedCentral Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, Campbell JN, Gavrilova O, Lee CE, Olson DP, Elmquist JK, Tannous BA, Krashes MJ, Lowell BB (2015) A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 18(6):863–871CrossRefPubMedPubMedCentral
Zurück zum Zitat Geerling JC, Loewy AD (2006a) Aldosterone-sensitive neurons in the nucleus of the solitary tract: bidirectional connections with the central nucleus of the amygdala. J Comp Neurol 497(4):646–657CrossRefPubMedPubMedCentral Geerling JC, Loewy AD (2006a) Aldosterone-sensitive neurons in the nucleus of the solitary tract: bidirectional connections with the central nucleus of the amygdala. J Comp Neurol 497(4):646–657CrossRefPubMedPubMedCentral
Zurück zum Zitat Geerling JC, Loewy AD (2006b) Aldosterone-sensitive neurons in the nucleus of the solitary tract: efferent projections. J Comp Neurol 497(2):223–250CrossRefPubMed Geerling JC, Loewy AD (2006b) Aldosterone-sensitive neurons in the nucleus of the solitary tract: efferent projections. J Comp Neurol 497(2):223–250CrossRefPubMed
Zurück zum Zitat Geerling JC, Loewy AD (2006c) Aldosterone-sensitive NTS neurons are inhibited by saline ingestion during chronic mineralocorticoid treatment. Brain Res 1115(1):54–64CrossRefPubMed Geerling JC, Loewy AD (2006c) Aldosterone-sensitive NTS neurons are inhibited by saline ingestion during chronic mineralocorticoid treatment. Brain Res 1115(1):54–64CrossRefPubMed
Zurück zum Zitat Geerling JC, Loewy AD (2007a) 11beta-hydroxysteroid dehydrogenase 2 vs. transgene: discrepant loci of expression in the adult brain. Am J Physiol Renal Physiol 293(1):F440–F441 (author reply F442–F443) CrossRefPubMed Geerling JC, Loewy AD (2007a) 11beta-hydroxysteroid dehydrogenase 2 vs. transgene: discrepant loci of expression in the adult brain. Am J Physiol Renal Physiol 293(1):F440–F441 (author reply F442–F443) CrossRefPubMed
Zurück zum Zitat Geerling JC, Loewy AD (2007b) Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst. Am J Physiol Regul Integr Comp Physiol 292(3):R1338–R1348CrossRefPubMed Geerling JC, Loewy AD (2007b) Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst. Am J Physiol Regul Integr Comp Physiol 292(3):R1338–R1348CrossRefPubMed
Zurück zum Zitat Geerling JC, Loewy AD (2007c) Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 504(4):379–403CrossRefPubMed Geerling JC, Loewy AD (2007c) Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 504(4):379–403CrossRefPubMed
Zurück zum Zitat Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93(2):177–209CrossRefPubMed Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93(2):177–209CrossRefPubMed
Zurück zum Zitat Geerling JC, Engeland WC, Kawata M, Loewy AD (2006a) Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci 26(2):411–417CrossRefPubMed Geerling JC, Engeland WC, Kawata M, Loewy AD (2006a) Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci 26(2):411–417CrossRefPubMed
Zurück zum Zitat Geerling JC, Kawata M, Loewy AD (2006b) Aldosterone-sensitive neurons in the rat central nervous system. J Comp Neurol 494(3):515–527CrossRefPubMed Geerling JC, Kawata M, Loewy AD (2006b) Aldosterone-sensitive neurons in the rat central nervous system. J Comp Neurol 494(3):515–527CrossRefPubMed
Zurück zum Zitat Geerling JC, Shin JW, Chimenti PC, Loewy AD (2010) Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 518(9):1460–1499CrossRefPubMedPubMedCentral Geerling JC, Shin JW, Chimenti PC, Loewy AD (2010) Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 518(9):1460–1499CrossRefPubMedPubMedCentral
Zurück zum Zitat Geerling JC, Stein MK, Miller RL, Shin JW, Gray PA, Loewy AD (2011) FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Res 1375:19–27CrossRefPubMed Geerling JC, Stein MK, Miller RL, Shin JW, Gray PA, Loewy AD (2011) FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Res 1375:19–27CrossRefPubMed
Zurück zum Zitat Gomez-Sanchez EP (1986) Intracerebroventricular infusion of aldosterone induces hypertension in rats. Endocrinology 118(2):819–823CrossRefPubMed Gomez-Sanchez EP (1986) Intracerebroventricular infusion of aldosterone induces hypertension in rats. Endocrinology 118(2):819–823CrossRefPubMed
Zurück zum Zitat Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925CrossRefPubMed Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925CrossRefPubMed
Zurück zum Zitat Gonzalez AD, Wang G, Waters EM, Gonzales KL, Speth RC, Van Kempen TA, Marques-Lopes J, Young CN, Butler SD, Davisson RL, Iadecola C, Pickel VM, Pierce JP, Milner TA (2012) Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Neuroscience 226:489–509CrossRefPubMedPubMedCentral Gonzalez AD, Wang G, Waters EM, Gonzales KL, Speth RC, Van Kempen TA, Marques-Lopes J, Young CN, Butler SD, Davisson RL, Iadecola C, Pickel VM, Pierce JP, Milner TA (2012) Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Neuroscience 226:489–509CrossRefPubMedPubMedCentral
Zurück zum Zitat Grippo AJ, Moffitt JA, Beltz TG, Johnson AK (2006) Reduced hedonic behavior and altered cardiovascular function induced by mild sodium depletion in rats. Behav Neurosci 120(5):1133–1143CrossRefPubMed Grippo AJ, Moffitt JA, Beltz TG, Johnson AK (2006) Reduced hedonic behavior and altered cardiovascular function induced by mild sodium depletion in rats. Behav Neurosci 120(5):1133–1143CrossRefPubMed
Zurück zum Zitat Gross PM, Wall KM, Pang JJ, Shaver SW, Wainman DS (1990) Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. Am J Physiol 259(6 Pt 2):R1131–R1138PubMed Gross PM, Wall KM, Pang JJ, Shaver SW, Wainman DS (1990) Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. Am J Physiol 259(6 Pt 2):R1131–R1138PubMed
Zurück zum Zitat Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7(5):335–346CrossRef Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7(5):335–346CrossRef
Zurück zum Zitat Haque M, Wilson R, Sharma K, Mills NJ, Teruyama R (2015) Localisation of 11beta-hydroxysteroid dehydrogenase type 2 in mineralocorticoid receptor expressing magnocellular neurosecretory neurones of the rat supraoptic and paraventricular nuclei. J Neuroendocrinol 27(11):835–849CrossRefPubMedPubMedCentral Haque M, Wilson R, Sharma K, Mills NJ, Teruyama R (2015) Localisation of 11beta-hydroxysteroid dehydrogenase type 2 in mineralocorticoid receptor expressing magnocellular neurosecretory neurones of the rat supraoptic and paraventricular nuclei. J Neuroendocrinol 27(11):835–849CrossRefPubMedPubMedCentral
Zurück zum Zitat Haskell-Luevano C, Monck EK (2001) Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept 99(1):1–7CrossRefPubMed Haskell-Luevano C, Monck EK (2001) Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept 99(1):1–7CrossRefPubMed
Zurück zum Zitat Herbert H, Saper CB (1990) Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. J Comp Neurol 293(4):581–598CrossRefPubMed Herbert H, Saper CB (1990) Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. J Comp Neurol 293(4):581–598CrossRefPubMed
Zurück zum Zitat Hlavacova N, Jezova D (2008) Chronic treatment with the mineralocorticoid hormone aldosterone results in increased anxiety-like behavior. Horm Behav 54(1):90–97CrossRefPubMed Hlavacova N, Jezova D (2008) Chronic treatment with the mineralocorticoid hormone aldosterone results in increased anxiety-like behavior. Horm Behav 54(1):90–97CrossRefPubMed
Zurück zum Zitat Hlavacova N, Wes PD, Ondrejcakova M, Flynn ME, Poundstone PK, Babic S, Murck H, Jezova D (2012) Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder. Int J Neuropsychopharmacol 15(2):247–265CrossRefPubMed Hlavacova N, Wes PD, Ondrejcakova M, Flynn ME, Poundstone PK, Babic S, Murck H, Jezova D (2012) Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder. Int J Neuropsychopharmacol 15(2):247–265CrossRefPubMed
Zurück zum Zitat Holmes MC, Sangra M, French KL, Whittle IR, Paterson J, Mullins JJ, Seckl JR (2006) 11beta-Hydroxysteroid dehydrogenase type 2 protects the neonatal cerebellum from deleterious effects of glucocorticoids. Neuroscience 137(3):865–873CrossRefPubMed Holmes MC, Sangra M, French KL, Whittle IR, Paterson J, Mullins JJ, Seckl JR (2006) 11beta-Hydroxysteroid dehydrogenase type 2 protects the neonatal cerebellum from deleterious effects of glucocorticoids. Neuroscience 137(3):865–873CrossRefPubMed
Zurück zum Zitat Jarvie BC, Palmiter RD (2017) HSD2 neurons in the hindbrain drive sodium appetite. Nat Neurosci 20(2):167–169CrossRefPubMed Jarvie BC, Palmiter RD (2017) HSD2 neurons in the hindbrain drive sodium appetite. Nat Neurosci 20(2):167–169CrossRefPubMed
Zurück zum Zitat Jellinck PH, Monder C, McEwen BS, Sakai RR (1993) Differential inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone in rat brain regions and peripheral tissues. J Steroid Biochem Mol Biol 46(2):209–213CrossRefPubMed Jellinck PH, Monder C, McEwen BS, Sakai RR (1993) Differential inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone in rat brain regions and peripheral tissues. J Steroid Biochem Mol Biol 46(2):209–213CrossRefPubMed
Zurück zum Zitat Kang BJ, Chang DA, Mackay DD, West GH, Moreira TS, Takakura AC, Gwilt JM, Guyenet PG, Stornetta RL (2007) Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 503(5):627–641CrossRefPubMed Kang BJ, Chang DA, Mackay DD, West GH, Moreira TS, Takakura AC, Gwilt JM, Guyenet PG, Stornetta RL (2007) Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 503(5):627–641CrossRefPubMed
Zurück zum Zitat Kawai Y (2018) Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits. Front Neuroanat 12:63CrossRefPubMedPubMedCentral Kawai Y (2018) Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits. Front Neuroanat 12:63CrossRefPubMedPubMedCentral
Zurück zum Zitat Kawai Y, Senba E (1996) Organization of excitatory and inhibitory local networks in the caudal nucleus of tractus solitarius of rats revealed in in vitro slice preparation. J Comp Neurol 373(3):309–321CrossRefPubMed Kawai Y, Senba E (1996) Organization of excitatory and inhibitory local networks in the caudal nucleus of tractus solitarius of rats revealed in in vitro slice preparation. J Comp Neurol 373(3):309–321CrossRefPubMed
Zurück zum Zitat Koneru B, Bathina CS, Cherry BH, Mifflin SW (2014) Mineralocorticoid receptor in the NTS stimulates saline intake during fourth ventricular infusions of aldosterone. Am J Physiol Regul Integr Comp Physiol 306(1):R61–R66CrossRefPubMed Koneru B, Bathina CS, Cherry BH, Mifflin SW (2014) Mineralocorticoid receptor in the NTS stimulates saline intake during fourth ventricular infusions of aldosterone. Am J Physiol Regul Integr Comp Physiol 306(1):R61–R66CrossRefPubMed
Zurück zum Zitat Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428CrossRefPubMedPubMedCentral Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428CrossRefPubMedPubMedCentral
Zurück zum Zitat Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, Liberles SD, Lowell BB (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242CrossRefPubMedPubMedCentral Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, Liberles SD, Lowell BB (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242CrossRefPubMedPubMedCentral
Zurück zum Zitat Lesman-Leegte I, Jaarsma T, Sanderman R, Linssen G, van Veldhuisen DJ (2006) Depressive symptoms are prominent among elderly hospitalised heart failure patients. Eur J Heart Fail 8(6):634–640CrossRefPubMed Lesman-Leegte I, Jaarsma T, Sanderman R, Linssen G, van Veldhuisen DJ (2006) Depressive symptoms are prominent among elderly hospitalised heart failure patients. Eur J Heart Fail 8(6):634–640CrossRefPubMed
Zurück zum Zitat Loewy A, Spyer K (1990) Central regulation of autonomic functions. Oxford University Press, New York Loewy A, Spyer K (1990) Central regulation of autonomic functions. Oxford University Press, New York
Zurück zum Zitat Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310(5748):683–685CrossRefPubMed Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310(5748):683–685CrossRefPubMed
Zurück zum Zitat Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140CrossRefPubMed Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140CrossRefPubMed
Zurück zum Zitat Malinow KC, Lion JR (1979) Hyperaldosteronism (Conn’s disease) presenting as depression. J Clin Psychiatry 40(8):358–359PubMed Malinow KC, Lion JR (1979) Hyperaldosteronism (Conn’s disease) presenting as depression. J Clin Psychiatry 40(8):358–359PubMed
Zurück zum Zitat Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M (2017) Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat Neurosci 20(2):230–241CrossRefPubMed Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M (2017) Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat Neurosci 20(2):230–241CrossRefPubMed
Zurück zum Zitat McCance RA (1936) Experimental human salt deficiency. Lancet 1:823–830CrossRef McCance RA (1936) Experimental human salt deficiency. Lancet 1:823–830CrossRef
Zurück zum Zitat McKinley MJ, Badoer E, Oldfield BJ (1992) Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res 594(2):295–300CrossRefPubMed McKinley MJ, Badoer E, Oldfield BJ (1992) Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res 594(2):295–300CrossRefPubMed
Zurück zum Zitat Morris MJ, Na ES, Grippo AJ, Johnson AK (2006) The effects of deoxycorticosterone-induced sodium appetite on hedonic behaviors in the rat. Behav Neurosci 120(3):571–579CrossRefPubMed Morris MJ, Na ES, Grippo AJ, Johnson AK (2006) The effects of deoxycorticosterone-induced sodium appetite on hedonic behaviors in the rat. Behav Neurosci 120(3):571–579CrossRefPubMed
Zurück zum Zitat Murck H, Buttner M, Kircher T, Konrad C (2014) Genetic, molecular and clinical determinants for the involvement of aldosterone and its receptors in major depression. Nephron Physiol 128(1–2):17–25CrossRefPubMed Murck H, Buttner M, Kircher T, Konrad C (2014) Genetic, molecular and clinical determinants for the involvement of aldosterone and its receptors in major depression. Nephron Physiol 128(1–2):17–25CrossRefPubMed
Zurück zum Zitat Naray-Fejes-Toth A, Fejes-Toth G (2007) Novel mouse strain with Cre recombinase in 11beta-hydroxysteroid dehydrogenase-2-expressing cells. Am J Physiol Renal Physiol 292(1):F486–F494CrossRefPubMed Naray-Fejes-Toth A, Fejes-Toth G (2007) Novel mouse strain with Cre recombinase in 11beta-hydroxysteroid dehydrogenase-2-expressing cells. Am J Physiol Renal Physiol 292(1):F486–F494CrossRefPubMed
Zurück zum Zitat Naray-Fejes-Toth A, Colombowala IK, Fejes-Toth G (1998) The role of 11beta-hydroxysteroid dehydrogenase in steroid hormone specificity. J Steroid Biochem Mol Biol 65(1–6):311–316CrossRefPubMed Naray-Fejes-Toth A, Colombowala IK, Fejes-Toth G (1998) The role of 11beta-hydroxysteroid dehydrogenase in steroid hormone specificity. J Steroid Biochem Mol Biol 65(1–6):311–316CrossRefPubMed
Zurück zum Zitat Nijenhuis WA, Oosterom J, Adan RA (2001) AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 15(1):164–171PubMed Nijenhuis WA, Oosterom J, Adan RA (2001) AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 15(1):164–171PubMed
Zurück zum Zitat Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335):135–138CrossRefPubMed Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335):135–138CrossRefPubMed
Zurück zum Zitat Pardridge WM, Mietus LJ (1979) Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest 64(1):145–154CrossRefPubMedPubMedCentral Pardridge WM, Mietus LJ (1979) Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest 64(1):145–154CrossRefPubMedPubMedCentral
Zurück zum Zitat Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79(1–2):135–160CrossRef Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79(1–2):135–160CrossRef
Zurück zum Zitat Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16(1):61–71CrossRefPubMed Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16(1):61–71CrossRefPubMed
Zurück zum Zitat Reincke M (2018) Anxiety, depression, and impaired quality of life in primary aldosteronism: why we shouldn’t ignore it! J Clin Endocrinol Metab 103(1):1–4CrossRefPubMed Reincke M (2018) Anxiety, depression, and impaired quality of life in primary aldosteronism: why we shouldn’t ignore it! J Clin Endocrinol Metab 103(1):1–4CrossRefPubMed
Zurück zum Zitat Resch JM, Fenselau H, Madara JC, Wu C, Campbell JN, Lyubetskaya A, Dawes BA, Tsai LT, Li MM, Livneh Y, Ke Q, Kang PM, Fejes-Toth G, Naray-Fejes-Toth A, Geerling JC, Lowell BB (2017) Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96(1):190–206 (e197) CrossRefPubMedPubMedCentral Resch JM, Fenselau H, Madara JC, Wu C, Campbell JN, Lyubetskaya A, Dawes BA, Tsai LT, Li MM, Livneh Y, Ke Q, Kang PM, Fejes-Toth G, Naray-Fejes-Toth A, Geerling JC, Lowell BB (2017) Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96(1):190–206 (e197) CrossRefPubMedPubMedCentral
Zurück zum Zitat Robson AC, Leckie CM, Seckl JR, Holmes MC (1998) 11 Beta-hydroxysteroid dehydrogenase type 2 in the postnatal and adult rat brain. Brain Res Mol Brain Res 61(1–2):1–10CrossRefPubMed Robson AC, Leckie CM, Seckl JR, Holmes MC (1998) 11 Beta-hydroxysteroid dehydrogenase type 2 in the postnatal and adult rat brain. Brain Res Mol Brain Res 61(1–2):1–10CrossRefPubMed
Zurück zum Zitat Roland BL, Li KX, Funder JW (1995) Hybridization histochemical localization of 11 beta-hydroxysteroid dehydrogenase type 2 in rat brain. Endocrinology 136(10):4697–4700CrossRefPubMed Roland BL, Li KX, Funder JW (1995) Hybridization histochemical localization of 11 beta-hydroxysteroid dehydrogenase type 2 in rat brain. Endocrinology 136(10):4697–4700CrossRefPubMed
Zurück zum Zitat Rowland NE, Fregly MJ (1988) Characteristics of thirst and sodium appetite in mice (Mus musculus). Behav Neurosci 102(6):969–974CrossRefPubMed Rowland NE, Fregly MJ (1988) Characteristics of thirst and sodium appetite in mice (Mus musculus). Behav Neurosci 102(6):969–974CrossRefPubMed
Zurück zum Zitat Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ (2006) Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol 48(8):1527–1537CrossRef Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ (2006) Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol 48(8):1527–1537CrossRef
Zurück zum Zitat Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ (1996) Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology 64(6):425–429CrossRefPubMed Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ (1996) Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology 64(6):425–429CrossRefPubMed
Zurück zum Zitat Sakai RR, McEwen BS, Fluharty SJ, Ma LY (2000) The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int 57(4):1337–1345CrossRefPubMed Sakai RR, McEwen BS, Fluharty SJ, Ma LY (2000) The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int 57(4):1337–1345CrossRefPubMed
Zurück zum Zitat Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL, Kovacs KJ (1996) The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 107:201–222CrossRefPubMed Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL, Kovacs KJ (1996) The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 107:201–222CrossRefPubMed
Zurück zum Zitat Sequeira SM, Geerling JC, Loewy AD (2006) Local inputs to aldosterone-sensitive neurons of the nucleus tractus solitarius. Neuroscience 141(4):1995–2005CrossRefPubMed Sequeira SM, Geerling JC, Loewy AD (2006) Local inputs to aldosterone-sensitive neurons of the nucleus tractus solitarius. Neuroscience 141(4):1995–2005CrossRefPubMed
Zurück zum Zitat Shields AD, Wang Q, Winder DG (2009) alpha2A-adrenergic receptors heterosynaptically regulate glutamatergic transmission in the bed nucleus of the stria terminalis. Neuroscience 163(1):339–351CrossRefPubMedPubMedCentral Shields AD, Wang Q, Winder DG (2009) alpha2A-adrenergic receptors heterosynaptically regulate glutamatergic transmission in the bed nucleus of the stria terminalis. Neuroscience 163(1):339–351CrossRefPubMedPubMedCentral
Zurück zum Zitat Shin JW, Geerling JC, Loewy AD (2009) Vagal innervation of the aldosterone-sensitive HSD2 neurons in the NTS. Brain Res 1249:135–147CrossRefPubMed Shin JW, Geerling JC, Loewy AD (2009) Vagal innervation of the aldosterone-sensitive HSD2 neurons in the NTS. Brain Res 1249:135–147CrossRefPubMed
Zurück zum Zitat Shin JW, Geerling JC, Stein MK, Miller RL, Loewy AD (2011) FoxP2 brainstem neurons project to sodium appetite regulatory sites. J Chem Neuroanat 42(1):1–23CrossRefPubMedPubMedCentral Shin JW, Geerling JC, Stein MK, Miller RL, Loewy AD (2011) FoxP2 brainstem neurons project to sodium appetite regulatory sites. J Chem Neuroanat 42(1):1–23CrossRefPubMedPubMedCentral
Zurück zum Zitat Simpson JB, Routtenberg A (1978) Subfornical organ: a dipsogenic site of action of angiotensin II. Science 201(4353):379–381CrossRefPubMed Simpson JB, Routtenberg A (1978) Subfornical organ: a dipsogenic site of action of angiotensin II. Science 201(4353):379–381CrossRefPubMed
Zurück zum Zitat Song K, Allen AM, Paxinos G, Mendelsohn FA (1992) Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol 316(4):467–484CrossRefPubMed Song K, Allen AM, Paxinos G, Mendelsohn FA (1992) Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol 316(4):467–484CrossRefPubMed
Zurück zum Zitat Sonino N, Fallo F, Fava GA (2006) Psychological aspects of primary aldosteronism. Psychother Psychosom 75(5):327–330CrossRefPubMed Sonino N, Fallo F, Fava GA (2006) Psychological aspects of primary aldosteronism. Psychother Psychosom 75(5):327–330CrossRefPubMed
Zurück zum Zitat Sonino N, Tomba E, Genesia ML, Bertello C, Mulatero P, Veglio F, Fava GA, Fallo F (2011) Psychological assessment of primary aldosteronism: a controlled study. J Clin Endocrinol Metab 96(6):E878–E883CrossRef Sonino N, Tomba E, Genesia ML, Bertello C, Mulatero P, Veglio F, Fava GA, Fallo F (2011) Psychological assessment of primary aldosteronism: a controlled study. J Clin Endocrinol Metab 96(6):E878–E883CrossRef
Zurück zum Zitat Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR (1988) Astrocytes synthesize angiotensinogen in brain. Science 242(4884):1444–1446CrossRefPubMed Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR (1988) Astrocytes synthesize angiotensinogen in brain. Science 242(4884):1444–1446CrossRefPubMed
Zurück zum Zitat Sunn N, McKinley MJ, Oldfield BJ (2003) Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J Neuroendocrinol 15(8):725–731CrossRefPubMed Sunn N, McKinley MJ, Oldfield BJ (2003) Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J Neuroendocrinol 15(8):725–731CrossRefPubMed
Zurück zum Zitat Szabo NE, da Silva RV, Sotocinal SG, Zeilhofer HU, Mogil JS, Kania A (2015) Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J Neurosci 35(13):5233–5246CrossRefPubMed Szabo NE, da Silva RV, Sotocinal SG, Zeilhofer HU, Mogil JS, Kania A (2015) Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J Neurosci 35(13):5233–5246CrossRefPubMed
Zurück zum Zitat Terenzi MG, Ingram CD (1995) A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis. Brain Res 672(1–2):289–297CrossRefPubMed Terenzi MG, Ingram CD (1995) A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis. Brain Res 672(1–2):289–297CrossRefPubMed
Zurück zum Zitat Tindell AJ, Smith KS, Pecina S, Berridge KC, Aldridge JW (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96(5):2399–2409CrossRefPubMed Tindell AJ, Smith KS, Pecina S, Berridge KC, Aldridge JW (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96(5):2399–2409CrossRefPubMed
Zurück zum Zitat Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11(9):998–1000CrossRefPubMedPubMedCentral Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11(9):998–1000CrossRefPubMedPubMedCentral
Zurück zum Zitat Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267(34):24248–24252PubMed Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267(34):24248–24252PubMed
Zurück zum Zitat Uhr M, Holsboer F, Muller MB (2002) Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 14(9):753–759CrossRefPubMed Uhr M, Holsboer F, Muller MB (2002) Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 14(9):753–759CrossRefPubMed
Zurück zum Zitat Velema MS, de Nooijer AH, Burgers VWG, Hermus A, Timmers H, Lenders JWM, Husson O, Deinum J (2017) Health-related quality of life and mental health in primary aldosteronism: a systematic review. Horm Metab Res 49(12):943–950CrossRefPubMed Velema MS, de Nooijer AH, Burgers VWG, Hermus A, Timmers H, Lenders JWM, Husson O, Deinum J (2017) Health-related quality of life and mental health in primary aldosteronism: a systematic review. Horm Metab Res 49(12):943–950CrossRefPubMed
Zurück zum Zitat Verstegen AMJ, Vanderhorst V, Gray PA, Zeidel ML, Geerling JC (2017) Barrington’s nucleus: neuroanatomic landscape of the mouse “pontine micturition center”. J Comp Neurol Verstegen AMJ, Vanderhorst V, Gray PA, Zeidel ML, Geerling JC (2017) Barrington’s nucleus: neuroanatomic landscape of the mouse “pontine micturition center”. J Comp Neurol
Zurück zum Zitat Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216CrossRefPubMed Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216CrossRefPubMed
Zurück zum Zitat Wu Q, Boyle MP, Palmiter RD (2009) Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137(7):1225–1234CrossRefPubMedPubMedCentral Wu Q, Boyle MP, Palmiter RD (2009) Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137(7):1225–1234CrossRefPubMedPubMedCentral
Zurück zum Zitat Zardetto-Smith AM, Beltz TG, Johnson AK (1994) Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res 645(1–2):123–134CrossRefPubMed Zardetto-Smith AM, Beltz TG, Johnson AK (1994) Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res 645(1–2):123–134CrossRefPubMed
Zurück zum Zitat Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014 (e1022) CrossRefPubMedPubMedCentral Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014 (e1022) CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang ZH, Kang YM, Yu Y, Wei SG, Schmidt TJ, Johnson AK, Felder RB (2006) 11beta-hydroxysteroid dehydrogenase type 2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation. Hypertension 48(1):127–133CrossRefPubMed Zhang ZH, Kang YM, Yu Y, Wei SG, Schmidt TJ, Johnson AK, Felder RB (2006) 11beta-hydroxysteroid dehydrogenase type 2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation. Hypertension 48(1):127–133CrossRefPubMed
Metadaten
Titel
Aldosterone-sensitive HSD2 neurons in mice
verfasst von
Silvia Gasparini
Jon M. Resch
Sowmya V. Narayan
Lila Peltekian
Gabrielle N. Iverson
Samyukta Karthik
Joel C. Geerling
Publikationsdatum
20.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1778-y

Weitere Artikel der Ausgabe 1/2019

Brain Structure and Function 1/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.