Skip to main content
Erschienen in: Medical Microbiology and Immunology 3/2015

01.06.2015 | Review

Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection

verfasst von: Jürgen Podlech, Stefan Ebert, Marc Becker, Matthias J. Reddehase, Michael Stassen, Niels A. W. Lemmermann

Erschienen in: Medical Microbiology and Immunology | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Reactivation of latent cytomegalovirus (CMV) in the transient immunocompromised state after hematoablative treatment is a major concern in patients undergoing hematopoietic cell transplantation (HCT) as a therapy of hematopoietic malignancies. Timely reconstitution of antiviral CD8 T cells and their efficient recruitment to the lungs is crucial for preventing interstitial pneumonia, the most severe disease manifestation of CMV in HCT recipients. Here, we review recent work in a murine model, implicating mast cells (MC) in the control of pulmonary infection. Murine CMV (mCMV) productively infects MC in vivo and triggers their degranulation, resulting in the release of the CC chemokine ligand 5 (CCL5) that attracts CD8 T cells to infiltrate infected tissues. Comparing infection of MC-sufficient C57BL/6 mice and congenic MC-deficient Kit W-sh/W-sh “sash” mutants revealed an inverse relation between the number of lung-infiltrating CD8 T cells and viral burden in the lungs. Specifically, reduced lung infiltration by CD8 T cells in “sash” mutants was associated with an impaired infection control. The causal, though indirect, involvement of MC in antiviral control was confirmed by reversion of the deficiency phenotype in “sash” mutants reconstituted with MC. These recent findings predict that efficient MC reconstitution facilitates the control of CMV infection also in immunocompromised HCT recipients.
Literatur
1.
Zurück zum Zitat Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452CrossRefPubMed Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452CrossRefPubMed
2.
Zurück zum Zitat Collington SJ, Williams TJ, Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32:478–485CrossRefPubMed Collington SJ, Williams TJ, Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32:478–485CrossRefPubMed
4.
Zurück zum Zitat Pennock JL, Grencis RK (2006) The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy 90:128–140PubMed Pennock JL, Grencis RK (2006) The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy 90:128–140PubMed
5.
Zurück zum Zitat Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11:53–59CrossRefPubMed Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11:53–59CrossRefPubMed
6.
Zurück zum Zitat Stassen M, Hültner L, Schmitt E (2002) Classical and alternative pathways of mast cell activation. Crit Rev Immunol 22:115–140CrossRefPubMed Stassen M, Hültner L, Schmitt E (2002) Classical and alternative pathways of mast cell activation. Crit Rev Immunol 22:115–140CrossRefPubMed
7.
Zurück zum Zitat Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494CrossRefPubMed Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494CrossRefPubMed
8.
Zurück zum Zitat Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786CrossRefPubMed Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786CrossRefPubMed
9.
Zurück zum Zitat Tamamis P, Floudas CA (2014) Elucidating a key anti-HIV-1 and cancer-associated axis: the structure of CCL5 (Rantes) in complex with CCR5. Sci Rep 4:5447CrossRefPubMed Tamamis P, Floudas CA (2014) Elucidating a key anti-HIV-1 and cancer-associated axis: the structure of CCL5 (Rantes) in complex with CCR5. Sci Rep 4:5447CrossRefPubMed
10.
Zurück zum Zitat Kohlmeier JE, Miller SC, Smith J, Lu B, Gerard C, Cookenham T, Roberts AD, Woodland DL (2008) The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 29:101–113CrossRefPubMedCentralPubMed Kohlmeier JE, Miller SC, Smith J, Lu B, Gerard C, Cookenham T, Roberts AD, Woodland DL (2008) The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 29:101–113CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106:978–987CrossRefPubMed Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106:978–987CrossRefPubMed
12.
Zurück zum Zitat Galkina E, Thatte J, Dabak V, Williams MB, Ley K, Braciale TJ (2005) Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J Clin Invest 115:3473–3483CrossRefPubMedCentralPubMed Galkina E, Thatte J, Dabak V, Williams MB, Ley K, Braciale TJ (2005) Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J Clin Invest 115:3473–3483CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–895CrossRefPubMed Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–895CrossRefPubMed
14.
Zurück zum Zitat Leveson-Gower DB, Sega EI, Kalesnikoff J, Florek M, Pan Y, Pierini A, Galli SJ, Negrin RS (2013) Mast cells suppress murine GVHD in a mechanism independent of CD4+ CD25+ regulatory T cells. Blood 122:3659–3665CrossRefPubMedCentralPubMed Leveson-Gower DB, Sega EI, Kalesnikoff J, Florek M, Pan Y, Pierini A, Galli SJ, Negrin RS (2013) Mast cells suppress murine GVHD in a mechanism independent of CD4+ CD25+ regulatory T cells. Blood 122:3659–3665CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 16. Caister Academic Press, Norfolk, pp 335–351 Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 16. Caister Academic Press, Norfolk, pp 335–351
16.
Zurück zum Zitat Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after haematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 17. Caister Academic Press, Norfolk, pp 352–379 Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after haematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 17. Caister Academic Press, Norfolk, pp 352–379
17.
Zurück zum Zitat Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273PubMedCentralPubMed Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273PubMedCentralPubMed
18.
Zurück zum Zitat Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241CrossRefPubMed Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241CrossRefPubMed
19.
Zurück zum Zitat Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804PubMedCentralPubMed Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804PubMedCentralPubMed
20.
Zurück zum Zitat Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104PubMed Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104PubMed
21.
Zurück zum Zitat Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377CrossRefPubMed Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377CrossRefPubMed
22.
Zurück zum Zitat Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMedCentralPubMed Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, Mohty M, Or R, Maschan M, Schumm M, Hamprecht K, Handgretinger R, Lang P, Einsele H (2010) Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116:4360–4367CrossRefPubMed Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, Mohty M, Or R, Maschan M, Schumm M, Hamprecht K, Handgretinger R, Lang P, Einsele H (2010) Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116:4360–4367CrossRefPubMed
24.
Zurück zum Zitat Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, RinghoVer M, RinghoVer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599CrossRefPubMed Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, RinghoVer M, RinghoVer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599CrossRefPubMed
25.
Zurück zum Zitat Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134CrossRefPubMed Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134CrossRefPubMed
26.
Zurück zum Zitat Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels R (2012) Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201:527–539CrossRefPubMed Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels R (2012) Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201:527–539CrossRefPubMed
27.
Zurück zum Zitat Ebert S, Becker M, Lemmermann NA, Büttner JK, Michel A, Taube C, Podlech J, Böhm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M (2014) Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 10:e1004100CrossRefPubMedCentralPubMed Ebert S, Becker M, Lemmermann NA, Büttner JK, Michel A, Taube C, Podlech J, Böhm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M (2014) Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 10:e1004100CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Becker M, Lemmermann NA, Ebert S, Baars P, Renzaho A, Podlech J, Stassen M, Reddehase MJ (2014) Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol. doi:10.1038/cmi.2014.73 PubMed Becker M, Lemmermann NA, Ebert S, Baars P, Renzaho A, Podlech J, Stassen M, Reddehase MJ (2014) Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol. doi:10.​1038/​cmi.​2014.​73 PubMed
29.
Zurück zum Zitat Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507CrossRefPubMedCentralPubMed Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67:5360–5366PubMedCentralPubMed Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67:5360–5366PubMedCentralPubMed
31.
Zurück zum Zitat Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987PubMedCentralPubMed Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987PubMedCentralPubMed
32.
Zurück zum Zitat Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494PubMedCentralPubMed Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494PubMedCentralPubMed
33.
Zurück zum Zitat Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73:8612–8622PubMedCentralPubMed Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73:8612–8622PubMedCentralPubMed
34.
Zurück zum Zitat Grzimek NK, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705CrossRefPubMedCentralPubMed Grzimek NK, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705CrossRefPubMedCentralPubMed
35.
Zurück zum Zitat Marquardt A, Halle S, Seckert CK, Lemmermann NA, Veres TZ, Braun A, Maus UA, Förster R, Reddehase MJ, Messerle M, Busche A (2011) Single cell detection of latent cytomegalovirus reactivation in host tissue. J Gen Virol 92:1279–1291CrossRefPubMed Marquardt A, Halle S, Seckert CK, Lemmermann NA, Veres TZ, Braun A, Maus UA, Förster R, Reddehase MJ, Messerle M, Busche A (2011) Single cell detection of latent cytomegalovirus reactivation in host tissue. J Gen Virol 92:1279–1291CrossRefPubMed
36.
Zurück zum Zitat Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503CrossRefPubMedCentralPubMed Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503CrossRefPubMedCentralPubMed
37.
Zurück zum Zitat Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566CrossRefPubMed Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566CrossRefPubMed
38.
Zurück zum Zitat Lyon MF, Glenister PH (1982) A new allele sash (Wsh) at the W-locus and a spontaneous recessive lethal in mice. Genet Res 39:315–322CrossRefPubMed Lyon MF, Glenister PH (1982) A new allele sash (Wsh) at the W-locus and a spontaneous recessive lethal in mice. Genet Res 39:315–322CrossRefPubMed
39.
Zurück zum Zitat Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848CrossRefPubMedCentralPubMed Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848CrossRefPubMedCentralPubMed
40.
Zurück zum Zitat Sacher T, Jordan S, Mohr CA, Vidy A, Weyn AM, Ruszics Z, Koszinowski UH (2008) Conditional gene expression systems to study herpesvirus biology in vivo. Med Microbiol Immunol 197:269–276CrossRefPubMed Sacher T, Jordan S, Mohr CA, Vidy A, Weyn AM, Ruszics Z, Koszinowski UH (2008) Conditional gene expression systems to study herpesvirus biology in vivo. Med Microbiol Immunol 197:269–276CrossRefPubMed
41.
Zurück zum Zitat Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3:263–272CrossRefPubMed Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3:263–272CrossRefPubMed
42.
Zurück zum Zitat Scholten J, Hartmann K, Gerbaulet A, Krieg T, Muller W, Testa G, Roers A (2008) Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res 17:307–315CrossRefPubMedCentralPubMed Scholten J, Hartmann K, Gerbaulet A, Krieg T, Muller W, Testa G, Roers A (2008) Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res 17:307–315CrossRefPubMedCentralPubMed
43.
Zurück zum Zitat Francis H, Meininger CJ (2010) A review of mast cells and liver disease: what have we learned? Dig Liver Dis 42:529–536CrossRefPubMed Francis H, Meininger CJ (2010) A review of mast cells and liver disease: what have we learned? Dig Liver Dis 42:529–536CrossRefPubMed
44.
Zurück zum Zitat Collington SJ, Williams TJ (2011) Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32:478–485CrossRefPubMed Collington SJ, Williams TJ (2011) Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32:478–485CrossRefPubMed
45.
Zurück zum Zitat Böhm V, Podlech J, Thomas D, Deegen P, Pahl-Seibert MF, Lemmermann NA, Grzimek NK, Oehrlein-Karpi SA, Reddehase MJ, Holtappels R (2008) Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med Microbiol Immunol 197:135–144CrossRefPubMed Böhm V, Podlech J, Thomas D, Deegen P, Pahl-Seibert MF, Lemmermann NA, Grzimek NK, Oehrlein-Karpi SA, Reddehase MJ, Holtappels R (2008) Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med Microbiol Immunol 197:135–144CrossRefPubMed
46.
Zurück zum Zitat Adler B, Sinzger C (2013) Cytomegalovirus interstrain variance in cell type tropism. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 17. Caister Academic Press, Norfolk, pp 297–321 Adler B, Sinzger C (2013) Cytomegalovirus interstrain variance in cell type tropism. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 17. Caister Academic Press, Norfolk, pp 297–321
47.
Zurück zum Zitat Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 1. Caister Academic Press, Norfolk, pp 1–22 Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 1. Caister Academic Press, Norfolk, pp 1–22
Metadaten
Titel
Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection
verfasst von
Jürgen Podlech
Stefan Ebert
Marc Becker
Matthias J. Reddehase
Michael Stassen
Niels A. W. Lemmermann
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical Microbiology and Immunology / Ausgabe 3/2015
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-015-0386-1

Weitere Artikel der Ausgabe 3/2015

Medical Microbiology and Immunology 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.