Skip to main content
Log in

Seaweeds as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The problems of resistant lines of Plasmodium falciparum are escalating. Twelve seaweeds species belong to five different families (Sargassaceae, Gracilariaceae, Hypneaceae, Corallinaceae and Halimedaceae) were collected from Mandapam coastal area, and the seaweeds extracts were tested for in vitro antiplasmodial activity against P. falciparum. Among the tested seaweeds, Gracilaria verrucosa (IC50 5.55 μg.ml−1) and Hypnea espera (IC50 8.94 μg.ml−1) showed good antiplasmodial activity, and these results are comparable with positive controls such as artemether (IC50 4.09 μg.ml−1) and chloroquine (IC50 19.59 μg.ml−1), respectively. Turbinaria conoides, Sargassum myriocystem, Hypnea valentiae and Jania rubens extracts showed IC50 values between 5 to 50 μg.ml−1. Sargassum sp., Turbinaria decurrens and Halimeda gracilis extracts showed IC50 values between 50 to 100 μg.ml−1. Gracilaria corticata, Jania adherens and Halimeda opuntia extracts showed IC50 value of more than 100 μg.ml−1. Statistical analysis reveals that significant in vitro antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out, and it shows that no morphological changes in erythrocytes by the ethanolic extract of seaweeds extracts after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of sugars, proteins, phenols and carboxylic acid in the ethanolic extracts of seaweeds. It is concluded from the present study that the ethanolic extracts of seaweeds of G. verrucosa and Hypnea espera possess lead compounds for development of antiplasmodial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams Y, Smith SL, Schwartz-Albiez R, Andrews KT (2005) Carrageenans inhibit the in vitro growth of Plasmodium falciparum and cytoadhesion to CD36. Parasitol Res 97:290–294

    Article  PubMed  Google Scholar 

  • Anand Ganesh E, Das S, Arun G, Balamurugan S, Ruban Raj R (2009) Heparin like compound from green alga Chaetomorpha antennina as potential anticoagulant agent. Asi J Med Sci 1(3):114–116

    Google Scholar 

  • Andrews KT, Klatt N, Adams Y, Mischnick P, Schwartz-Albiez R (2005) Inhibition of chondroitin-4-sulfate-specific adhesion of Plasmodium falciparum infected erythrocytes by sulfated polysaccharides. Infect Immun 73:4288–4294

    Article  PubMed  CAS  Google Scholar 

  • Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, Timon David P (2002) Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol Res 88(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Baqar Naqvi S, Khan A, Shaikh D, Rafi Shaikh M (1992) Nematicidal properties of selected marine algae from Karachi coast. J Isla Aca Sci 5(3):171–172

    Google Scholar 

  • Barbosa JP, Fleury BG, da Gama BAP, Teixeira VL, Pereira RC (2007) Natural products as antifoulants in the Brazilian brown alga Dictyota pfaffii (Phaeophyta, Dictyotales). Biochem Syst Ecol 35:549–553

    Article  CAS  Google Scholar 

  • Basco LK, Mitaku S, Skaltsounis AL, Ravelomanaintsoa N, Tillequin F, Koch M, Le Bras J (1994) In vitro activities of acridone alkaloids against Plasmodium falciparum. Antimicrobi Agents Chemother 5:1169–1171

    Google Scholar 

  • Bazes A, Silkina A, Douzenel P, Fay F, Kervarec N, Morin D, Berge JP, Bourgougnon N (2009) Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J Appl Phycol 21:395–403

    Article  CAS  Google Scholar 

  • Carlson J, Ekre HP, Helmby H, Gysin J, Greenwood BM, Wahlgren M (1992) Disruption of Plasmodium falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. Am J Trop Med Hyg 46:595–602

    PubMed  CAS  Google Scholar 

  • Chenniappan K, Kadarkarai M (2010) In vitro antimalarial activity of traditionally used Western Ghats plants from India and their interactions chloroquine against chloroquine- resistant Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-010-2005-9

    PubMed  Google Scholar 

  • Chung IM, Kim MY, Moon HI (2008) Antiplasmodial activity of sesquiterpene lactone from Carpesium rosulatum in mice. Parasitol Res 103:341–344

    Article  PubMed  Google Scholar 

  • Clark DL, Su S, Davidson EA (1997) Saccharide anions as inhibitors of the malaria parasite. Glycoconj J 14:473–479

    Article  PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plants products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Dianne J, Jeanne M, Margarette S, Oren S, Aggrey J, Piet A, Altaf A, Bernard L, Feiko O (2003) Treatment history and treatment dose are important determinants of sulfadoxine-pyrimethamine efficacy in children with uncomplicated malaria in Western Kenya. J Infect Dis 187:467–468

    Article  Google Scholar 

  • Gansane A, Sanon S, Ouattara LP, Traore A, Hutter S, Ollivier E, Azas N, Traore AS, Guissou IP, Sirima SB, Nebie I (2010) Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: contribution for their preservation. Parasitol Res 106:335–340

    Article  PubMed  Google Scholar 

  • Ireland CM, Roll DM, Molinski TF, Mckee TC, Zarbriske TM, Swersey JC (1988) Uniqueness of the marine environment: categories of marine natural products from invertebrates In: biomedical importance of marine organisms. California Academy of Science, California, United States of America, pp 41–47

    Google Scholar 

  • Jothibai Margret R, Kumaresan S, Ravikumar S (2009) A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. J Environ Biol 30(5):899–902

    PubMed  Google Scholar 

  • Kepam W (1986) Qualitative organic analysis (spectrochemical techniques), IIth edn. McGraw Hill, London, pp 40–58

    Google Scholar 

  • Kisilevsky R, Crandall I, Szarek WA, Bhat S, Tan C, Boudreau L, Kain KC (2002) Short-chain aliphatic polysulfonates inhibit the entry of Plasmodium into red blood cells. Antimicrobi Agents Chemother 46(8):2619–2626

    Article  CAS  Google Scholar 

  • Lee SJ, Park WH, Moon HI (2009) Bioassay-guided isolation of antiplasmodial anacardic acids derivatives from the whole plants of Viola websteri Hemsl. Parasitol Res 104:463–466

    Article  PubMed  Google Scholar 

  • Manilal A, Sujith S, Seghal Kiran G, Selvin J, Shakir C, Gandhimathi R, Nataraja Panikkar MV (2009) Biopotentials of seaweeds collected from southwest coast of India. J Mar Sci Technolo 17(1):67–73

    Google Scholar 

  • Moon HI (2007) Antiplasmodial activity of ineupatorolides A from Carpesium rosulatum. Parasitol Res 100:1147–1149

    Article  PubMed  Google Scholar 

  • Moore GE, Gerner RE, Frankin HA (1967) Cultures of normal human leukocytes. J Am Med Assoc 199:519–524

    Article  CAS  Google Scholar 

  • Murakami A, Ohigashi H, Koshimizu K (1994) Possible anti-tumor promoting properties of traditional Thai foods and some of their active constituents. Asia Pac J Clin Nutr 3:185–191

    Google Scholar 

  • Ouattara Y, Sanon S, Traore Y, Mahiou V, Azas N, Sawadogo L (2006) Antimalarial activity of Swartzia madagascariensis desv. (leguminosae), Combretum glutinosum guill. and perr. (combretaceae) and Tinospora bakis miers. (menispermaceae), Burkina Faso medicinal plants. Afr J Tradit Complement Altern Med 3(1):75–81

    Google Scholar 

  • Ponce NMA, Pujol CA, Damonte EB, Flores ML, Stortz CA (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohyd Res 338:153–165

    Article  CAS  Google Scholar 

  • Prakash S (2004) In vitro studies on male antifertility compounds from seaweed marine halophytes. M.Sc. Dissertation, Manonmaniam Sundaranar University, India

  • Ramazani A, Sardari S, Zakeri S, Vaziri B (2010) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res 107:593–599

    Article  PubMed  Google Scholar 

  • Rao PS, Shelat YA (1982) Antifungal activity of different fractions of extracts from seaweeds. In: Hoppe HA, Levring T, Tanaka X (eds) Marine algae in pharmaceutical sciences, 2. Walter de Grugter, Berlin, pp 93–98

    Google Scholar 

  • Rasoanaivo P, Ratsimamanga Urverg S, Ramanitrhasimbola D, Rafatro H, Rakoto Ratsimamanga A (1992) Criblage d’extraits de plantes de Madagascar pour recherche d’activite antipaludique et d’effet potentialisateur de la chloroquine. J Ethnopharmacol 64:117–126

    Article  Google Scholar 

  • Ravi Kumar S, Ramanathan G, Subhakaran M, Jacob Inbaneson S (2009) Antimicrobial compounds from marine halophytes for silkworm disease treatment. Int J Med Med Sci 1(5):184–191

    Google Scholar 

  • Ravikumar S, Anburajan L, Ramanathan G, Kaliaperumal N (2002) Screening of seaweed extracts against antibiotic resistant post operative infectious pathogens. Seaweed Res Utli Assoc 24(1):95–99

    Google Scholar 

  • Ravikumar S, Nazar S, Nural Shiefa A, Abideen S (2005) Antibacterial activity of traditional therapeutic coastal medicinal plants against some pathogen. J Environ Biol 26:383–386

    PubMed  CAS  Google Scholar 

  • Ravikumar S, Ramanathan G, Jacob Inbaneson S, Ramu A (2010) Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-010-2041-5

    Google Scholar 

  • Rowe A, Berendt AR, Marsh K, Newbold CI (1994) Plasmodium falciparum: a family of sulphated glycoconjugates disrupts erythrocyte rosettes. Exp Parasitol 79:506–516

    Article  PubMed  CAS  Google Scholar 

  • Sanon S, Azas N, Gasquet M, Ollivier E, Mahiou V, Barro N, Cuzin Ouattara N, Traore AS, Esposito BG, Timon David P (2003) Antiplasmodial activity of alkaloid extracts from Pavetta crassipes (K. Schum) and Acanthospermum hispidum (DC), two plants used in traditional medicine in Burkina Faso. Parasitol Res 90:314–317

    Article  PubMed  CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochem 30:3875–3883

    Article  CAS  Google Scholar 

  • Shehnaz L (2003) Comparative phycochemical investigations on a variety of marine algae from Karachi coast. Ph.D. Dissertation, University of Karachi, Pakistan

  • Sherman PW, Billing J (1999) Darwinian gastronomy: why we use spices. Biosci 49:453–463

    Article  Google Scholar 

  • Sofowora A (1982) Medicinal plants and traditional medicine in Africa. Wiley, New York, p 251

    Google Scholar 

  • Son IH, Chung IM, Lee SJ, Moon HI (2007) Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea. Parasitol Res 101:237–241

    Article  PubMed  Google Scholar 

  • Stierle AC, Cardellina JHI, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44:1021

    Article  PubMed  CAS  Google Scholar 

  • Sultana V, Ehteshamul-Haque S, Ara J, Athar M (2005) Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int J Environ Sci Technol 2(2):129–132

    Google Scholar 

  • Sureshkumar S, John JAC, Ravikumar S (2002) Antimicrobial activity of acetone extracts of seaweeds against human pathogens. Seaweed Res Utiln 24:111–115

    Google Scholar 

  • Tan LT, Williamson RT, Gerwick WH, Watts KS, McGough K, Jacobs R (2000) cis, cis- and trans, trans-ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Org Chem 28:419–425

    Article  Google Scholar 

  • Trager W (1987) The cultivation of Plasmodium falciparum: applications in basic and applied research in malaria. Ann Trop Med Parasitol 82:511–529

    Google Scholar 

  • Vidhyavathi N, Sridhar KR (1991) Seasonal and geographical variations in the antimicrobial activity of seaweeds from the Mangalore coast in India. Bot Mar 34:279–284

    Article  Google Scholar 

  • Waako PJ, Katuura E, Smith P, Folb P (2007) East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr J Ecol 45(1):102–106

    Article  Google Scholar 

  • Xiao L, Yang C, Patterson PS, Udhayakumar V, Lal AA (1996) Sulfated polyanions inhibit invasion of erythrocytes by plasmodial merozoites and cytoadherence of endothelial cells to parasitized erythrocytes. Infect Immun 64:1373–1378

    PubMed  CAS  Google Scholar 

  • Zhu W, Ooi VEC, Chan PKS, Ang PO Jr (2003) Inhibitory effect of extracts of marine algae from Hong Kong against herpes simplex viruses. In: Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds) Proceedings of the 17th international seaweed symposium. Oxford University Press, Oxford, pp 159–164

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the authorities of the Alagappa University for providing the required facilities and also to the Indian Council of Medical Research, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, S., Jacob Inbaneson, S. & Suganthi, P. Seaweeds as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India. Parasitol Res 109, 47–52 (2011). https://doi.org/10.1007/s00436-010-2219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2219-x

Keywords

Navigation