Skip to main content
Log in

Comparison of microscopy, rapid immunoassay, and molecular techniques for the detection of Giardia lamblia and Cryptosporidium parvum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Giardia lamblia and Cryptosporidium parvum are recognized as the most common protozoan infections in Saudi Arabia. Microscopic examination of stool samples, either direct or concentrated, for the recovery of G. lamblia cysts and trophozoites and C. parvum oocysts is still the most commonly used for the diagnosis of both parasites. We compared the conventional parasitological techniques of iodine-stained wet mount for G. lamblia and Kinyoun's acid-fast for C. parvum against ImmunoCard STAT® Cryptosporidium/Giardia and real-time polymerase chain reaction (PCR) detecting the 18S rRNA gene of G. lamblia and conventional PCR detecting the same gene of C. parvum at a tertiary hospital in Dhahran, Saudi Arabia. Out of 148 stool samples, 19 and 12 true positives were identified for G. lamblia and C. parvum, respectively, using a composite reference standard. In this case, true positives and negatives were considered as those with at least two positive or negative results out of the three tests. Both ImmunoCard STAT! and PCR methods were more sensitive than the microscopic tests of a single stool specimen of 85.7 % (CI = 62.6–96.2 %) and 85.7 % (CI = 56.2–97.5 %) for G. lamblia and C. parvum, respectively. However, specificity of microscopic tests was higher than other techniques for both parasites. Although PCR seems to be most sensitive for both G. lamblia and C. parvum, its low specificity may render its superiority over other techniques. When a single stool sample is used for detection of G. lamblia and C. parvum, better results can be obtained when coupled with serological testing. Although PCR is the most sensitive method for the detection of both G. lamblia and C. parvum, its use requires attention in relation to the increased possible false positives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Briken FA, Amin A, Beeching NJ, Hommel M, Hart CA (2003) Detection of Cryptosporidium amongst diarrheic and asymptomatic children in Jeddah, Saudi Arabia. Ann Trop Med Parasitol 97(5):505–510

    Article  Google Scholar 

  • Alonzo TA, Pepe MS (1999) Using a combination of reference tests to assess the accuracy of a new diagnostic test. Stat Med 18:2987–3003

    Article  PubMed  CAS  Google Scholar 

  • Ash LR, Orihel TC (1987) Parasites: a guide to laboratory procedures and identification. American Society of Clinical Pathologists Press, Chicago, Ill

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2005) Current protocols in molecular biology. Wiley, Hoboken

    Google Scholar 

  • Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, Poole F, Smith PG, Sriram N, Wongsrichanalai C, Linke R, O’Brien R, Perkins M, Cunningham J, Matsoso P, Nathanson CM, Olliaro P, Peeling RW, Ramsay A (2006) Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol 4(12):S20–S32

    Article  PubMed  Google Scholar 

  • Birkhead G, Vogt RL (1989) Epidemiologic surveillance for endemic Giardia lamblia infection in Vermont. The roles of waterborne and person-to-person transmission. Am J Epidemiol 129(4):762–768

    PubMed  CAS  Google Scholar 

  • Bolbol AS (1992) Cryptosporidiosis in young children suffering from diarrhea in Riyadh, Saudi Arabia. J Hyg Epidemiol Microbiol Immunol 36:396–400

    PubMed  CAS  Google Scholar 

  • Branda JA, Tai-Yuan DL, Rosenberg ES, Halpern EF, Ferraro MJ (2006) A rational approach to the stool ova and parasite examination. Clin Infect Dis 42:972–978

    Article  PubMed  Google Scholar 

  • Cartwright CP (1999) Utility of multiple stool specimen ova and parasite examinations in a high prevalence setting. J Clin Microbiol 37:2408–2411

    PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standard Institute (CLSI) (2005) Procedures for the recovery and identification of parasites from the intestinal tract; approved guidelines—second edition. CLSI Document M28-A2 (ISBN 1-56238-572-0).

  • Danciger M, Lopez M (1975) Numbers of Giardia in the feces of infected children. AmJTrop Med Hyg 24(2):237–242

    CAS  Google Scholar 

  • Dib HH, Lu SQ, Wen SF (2008) Prevalence of Giardia lamblia with or without diarrhea in South East, South East Asia and the Far East. Parasitol Res 103(2):239–251

    Article  PubMed  Google Scholar 

  • El-Badry AA, Al-Ali KH, Mahrous AS (2010) Molecular identification & prevalence of Giardia lamblia & Cryptosporidium in dudenal aspirate in Al-Madinah. Journal of Medicine and Biomedical Science. ISSN: 2078–0273: 47–52

    Google Scholar 

  • Elgun G, Koltas IS (2011) Investigation of Cryptosporidium spp. antigen by ELISA method in stool specimens obtained from patients with diarrhea. Parasitol Res 108(2):395–397

    Article  PubMed  Google Scholar 

  • El-Moamly AA, El-Sweify MA (2012) ImmunoCard STAT! cartridge antigen detection assay compared to microplate enzyme immunoassay and modified Kinyoun's acid-fast staining technique for detection of Cryptosporidium in fecal specimens. Parasitol Res 110(2):1034–1041

    Article  Google Scholar 

  • Garcia LS, Shum AC, Bruckner DA (1992) Evaluation of a new monoclonal antibody combination reagent for direct fluorescence detection of Giardia cysts and Cryptosporidium oocysts in human fecal specimens. J Clin Microbiol 30:3255–3257

    PubMed  CAS  Google Scholar 

  • Garcia LS, Shimizu RY (1997) Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J Clin Microbiol 35:1526–1529

    PubMed  CAS  Google Scholar 

  • Garcia LS, Shimizu RY (2000) Detection of Giardia lamblia and Cryptosporidium parvum antigens in human fecal specimens using the ColorPAC combination rapid solid-phase qualitative immunochromatographic assay. J Clin Microbio 38:1267–1268

    CAS  Google Scholar 

  • Garcia LS, Shimizu RY, Novak S, Carroll M, Chan F (2003) Commercial assay for detection of Giardia lamblia and Cryptosporidium parvum antigens in human fecal specimens by rapid solid-phase qualitative immunochromatography. J Clin Microbiol 41:209–212

    Article  PubMed  CAS  Google Scholar 

  • Hanson KL, Cartwright CP (2001) Use of an enzyme immunoassay does not eliminate the need to analyze multiple stool specimens for sensitive detection of Giardia lamblia. J Clin Microbiol 39:474–477

    Article  PubMed  CAS  Google Scholar 

  • Johnston SP, Ballard MM, Beach MJ, Causer L, Wilkens PP (2003) Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. J Clin Microbiol 41:623–626

    Article  PubMed  Google Scholar 

  • Khan ZH, Namnyak SS, Al-Jama AA, Madan I (1988) Prevalence of cryptosporidiosis in Damam and Alkhobar. Saudi Arabia Ann Trop Paediatr 8:170–172

    CAS  Google Scholar 

  • Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260

    Article  PubMed  CAS  Google Scholar 

  • Magi B, Canocchi V, Tordini G, Cellesi C, Barberi A (2005) Cryptosporidium infection: diagnostic techniques. Parasitol Res 98(2):150–152

    Article  PubMed  Google Scholar 

  • Meinhardt PL, Casemore DP, Miller KB (1996) Epidemiological aspects of human cryptosporidiosis and the role of waterborne transmission. Epidemiol Rev 18:118–136

    Article  PubMed  CAS  Google Scholar 

  • Meyer EA (1990) Human parasitic diseases: giardiasis. In: Meyer EA (ed) Taxonomy and nomenclature. Elsevier, Amsterdam, pp 51–60

    Google Scholar 

  • Minak J, Kabir M, Mahmud I, Liu Y, Liu L, Haque R, Petri WA (2012) Evaluation of rapid antigen point-of-care tests for detection of Giardia and Cryptosporidium species in human fecal specimens. J Clin Microbiol 50:154–156

    Article  PubMed  Google Scholar 

  • Morgan UM, Pallant L, Dwyer BW, Forbes DA, Rich G, Thompson RCA (1998) Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J Clin Microbiol 36:995–998

    PubMed  CAS  Google Scholar 

  • Ndao M (2010) Diagnosis of parasitic diseases: old and new approaches. Interdisc Perspect on Infect Dis 106(5):1127–1134

    Google Scholar 

  • Newman RD, Jaeger KL, Wuhib T, Lima AAM, Guerrant RL, Sears CL (1993) Evaluation of an antigen capture enzyme-linked immunosorbent assay for detection of Cryptosporidium oocysts. J Clin Microbiol 31:2080–2084

    PubMed  CAS  Google Scholar 

  • Omar MS, Abu-Zeid HAH, Mahfouz AAR (1991) Intestinal parasitic infections in schoolchildren of Abha (Asir), Saudi Arabia. Acta Trop 48(3):195–202

    Article  PubMed  CAS  Google Scholar 

  • Omar MS, Mahfouz AA, Abdel-Moneim M (1995) The relationship of water sources and other determinants to prevalence of intestinal protozoal infections in a rural community of Saudi Arabia. J of Community Health 20(5):433–440

    Article  CAS  Google Scholar 

  • Oster N, Gehrig-Feistel H, Jung H, Kammer J, McLean JE, Lanzer M (2006) Evaluation of the immunochromatographic CORIS Giardia-Strip test for rapid diagnosis of Giardia lamblia. Eur J Clin Microbiol Infect Dis 25(2):112–115

    Article  PubMed  CAS  Google Scholar 

  • Pincus MR (1996) Interpreting laboratory results: reference values and decision making. In: Hery JB (ed) Clinical diagnosis and management by laboratory methods. Saunders, Philadelphia, pp 76–77

    Google Scholar 

  • Ridley DS, Hawgood BC (1956) The value of formol-ether concentration of faecal cysts and ova. J Clin Pathol 9(1):74–76

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Cebelinski EA, Taylor C, Smith KE (2010) Evaluation of the positive predictive value of rapid assays used by clinical laboratories in Minnesota for the diagnosis of cryptosporidiosis. Clin Infect Dis 50(8):e53–e55

    Article  PubMed  CAS  Google Scholar 

  • Schuurman T, Lankamp P, van Belkum A, Kooistra-Smid M, van Zwet A (2007) Comparison of microscopy, real-time PCR and a rapid immunoassay for the detection of Giardia lamblia in human stool specimens. Clin Microbiol Infect 13:1186–1191

    Article  PubMed  CAS  Google Scholar 

  • Verweij JJ, Pit DSS, Van Lieshout L, Baeta SM, Dery GD, Gasser RB, Polderman AM (2001) Determining the prevalence of Oesophagostomum bifurcum and Necator americanus infections using specific PCR amplification of DNA from faecal samples. Trop Med Int Health 6:726–731

    Article  PubMed  CAS  Google Scholar 

  • Wybo I, Piérard D, Reynders M, Breynaert J, Covens L, Cnudde D, Lauwers S (2005) Evaluation of ImmunoCard STAT! immunoassay in the detection of Giardia lamblia and Cryptosporidium parvum specific antigens. 15th European Congress of Clinical Microbiology and Infectious Diseases Copenhagen/Denmark, April 2–5, 2005. Abstract number: 1134_03_261

Download references

Acknowledgments

This work was supported by the Prince Sultan Military College of Health Sciences. We thank the College Director Maj. Gen. Saleh H Al-Shayea. Col/Yasser Al Neam and Mr. Abdulla Al Shehri helped us a lot in procurement of supplies and samples, to whom we are indebted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah H. Elsafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsafi, S.H., Al-Maqati, T.N., Hussein, M.I. et al. Comparison of microscopy, rapid immunoassay, and molecular techniques for the detection of Giardia lamblia and Cryptosporidium parvum . Parasitol Res 112, 1641–1646 (2013). https://doi.org/10.1007/s00436-013-3319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3319-1

Keywords

Navigation